В этой статье будет рассмотрено назначение и классификация систем вентиляции для жилых помещений. Мы расскажем как произвести расчет системы вентиляции и приведем пример расчета систем вентиляции. Рассмотрим как проверить работает ли вентиляция и дадим подробную методику расчета систем вентиляции.

Классификация систем вентиляции

Системы вентиляции жилых и общественных зданий, можно классифицировать по трем категориям: по функциональному назначению, по способу побуждения движения воздуха и по способу перемещения воздуха.

Виды систем вентиляции по функциональному назначению :

  1. Приточная система вентиляции (система вентиляции, которая обеспечивает подачу в помещение свежего воздуха);
  2. Вытяжная система вентиляции (система вентиляции, которая удаляет из помещения отработанный воздух);
  3. Рециркуляционная система вентиляции (система вентиляции, которая обеспечивает подачу в помещение свежего воздуха с частичным подмесом вытяжного воздуха).

Виды систем вентиляции по способу побуждения движения воздуха :

  1. С механическим или искусственным (это системы вентиляции, в которых перемещение воздуха осуществляется с помощью вентилятора);
  2. С природным или естественным (перемещение воздуха осуществляется за счет действия гравитационных сил).

Виды систем вентиляции по способу перемещения воздуха :

  1. Канальные (перемещение воздуха осуществляется по сети воздуховодов и каналов);
  2. Безканальные (воздух попадает в помещение не организовано, через неплотности оконных проемов, открытые окна, двери).

Чем грозит некачественная вентиляция?

Если в доме недостаточный приток, то в помещении будет наблюдаться недостаток кислорода, повышенная влажность или сухость (в зависимости от времени года) и запыленность.

Запотевание окон при недостаточной вентиляции

Если же в доме недостаточная вытяжка, то будет наблюдаться повышенная влажность, жирная копоть на стенах кухни, запотевание окон в зимний период, возможен грибок на стенах, особенно ванной комнаты и туалете, а также стенах покрытых обоями.


Грибок на обоях при недостаточной вентиляции

И как следствие повышение риска заболевания сердечнососудистой и дыхательной системы. Кроме того, большая часть мебели и отделочных материалов постоянно выделяет в воздух опасные химические соединения. Их ПДК (предельно допустимые концентрации) в санитарно-гигиенических заключениях на данную мебель и отделочные материалы задается из условий соблюдения норм вентиляции. И чем хуже работает вентиляция, тем сильнее возрастает концентрация данных вредностей в воздухе дома. Поэтому от обеспечения должной вентиляции напрямую зависит здоровье жильцов дома.

Как проверить работает ли Ваша вентиляция?

В первую очередь, вы можете проверить, работает ли вытяжка. Для этого поднесите зажигалку или листок бумаги к вентиляционной решетке, установленной в стене ванной комнаты или на кухне. Если пламя (или листок бумаги) отогнулось в сторону решетки, то тяга есть, вытяжка рабочая. Если нет, то канал перекрыт, например забился, листьями через воздуховод. Если же у Вас квартира, то его могли перекрыть соседи, делая перепланировку помещений. Поэтому первая ваша задача обеспечить тягу в вентиляционном канале.


Проверка вентиляции на наличие тяги при помощи зажигалки

Если тяга есть, но она не постоянная, и над или под Вами живут соседи. В таком случае к Вам может перетекать воздух, из соседских помещений неся за собой и запахи. В данной ситуации необходимо оснащать вытяжку обратным клапаном или автоматическим жалюзи, которое закрывается при обратной тяге.

Как проверить достаточное ли у Вас сечение вытяжки, мы рассмотрим дальше.

Расчет воздухообмена. Формула расчета вентиляции

Для того чтобы выбрать необходимую нам систему вентиляции, нужно знать, сколько же воздуха надо подавать или удалять с того или иного помещения. Простыми словами, необходимо узнать воздухообмен в помещении или в группе помещений. Это даст понять как рассчитать систему вентиляции, выбрать тип и модель вентилятора и произвести расчет воздуховодов.

Существует много вариантов как рассчитать воздухообмен, например, на удаление излишков тепла, на удаление влаги, на разбавление загрязнений до ПДК (предельно допустимой концентрации). Все они требуют специальных знаний, умения пользоваться таблицами и диаграммами. Следует отметить, что существуют государственные нормативные документы, такие как СанПины, ГОСТы, СНиПы и ДБНы, в которых четко определено, какие должны быть системы вентиляции в тех или иных помещениях, какое оборудование должно в них использоваться и где оно должно располагаться. А также, какое количество воздуха, с какими параметрами и по какому принципу должно в них подаваться и удаляться. При проектировании систем вентиляции каждый инженер проводит расчеты согласно вышеупомянутых норм. Для расчета воздухообмена в жилых помещениях мы также будем руководствоваться этими нормами и воспользуемся двумя самыми простыми методами нахождения воздухообмена: по площади помещения, по санитарно-гигиеническим нормам и воздухообмен по кратностям.

Расчет по площади помещения

Это самый простой расчет. Расчет вентиляции по площади делается на основании того, что для жилых помещений нормы регламентируют подавать 3 м 3 /час свежего воздуха на 1 м 2 площади помещения, независимо от количества людей.

Расчет по санитарно-гигиеническим нормам.

По санитарным нормам для общественных и административно-бытовых зданий на одного постоянно пребывающего в помещении человека необходимо 60 м 3 /час свежего воздуха, а на одного временного 20 м 3 /час.

Расчет по кратностям

В нормативном документе, а именно в табл.4 ДБН В.2.2-15-2005 Жилые здания есть таблица с приведенными кратностями по помещениям (табл.1), их мы и будем использовать в данном расчете (для России эти данные приведены в СНиП 2.08.01-89* Жилые здания , Приложение 4).

Таблица 1. Кратности воздухообмена в помещениях жилых зданий.

Помещения Расчетная температура зимой,ºС Требования к воздухообмену
Приток Вытяжка
Общая комната, спальня, кабинет 20 1-кратный --
Кухня 18 - По воздушному балансу квартиры, но не менее, м 3 /час 90
Кухня-столовая 20 1-кратный
Ванная 25 - 25
Уборная 20 - 50
Совмещенный санузел 25 - 50
Бассейн 25 По расчету
Помещение для стиральной машины в квартире 18 - 0,5-кратный
Гардеробная для чистки и глажения одежды 18 - 1,5-кратный
Вестибюль, общий коридор, лестничная клетка, прихожая квартиры 16 - -
Помещение дежурного персонала (консъержа/консъержки) 18 1-кратный -
Незадымляемая лестничная клетка 14 - -
Машинное помещение лифтов 14 - 0,5-кратный
Мусоросборная камера 5 - 1-кратный
Гараж-стоянка 5 - По расчету
Электрощитовая 5 - 0,5-кратный

Кратность воздухообмена - это величина, значение которой показывает, сколько раз в течение одного часа воздух в помещении полностью заменяется на новый. Она напрямую зависит от конкретного помещения (его объема). То есть, однократный воздухообмен это когда в течение часа в помещение подали свежий и удалили «отработанный» воздух в количестве равном одному объему помещения; 0,5 кранный воздухообмен - половину объема помещения. В этой таблице в двух последних колонках указаны кратности и требования к воздухообмену в помещениях по притоку и вытяжке воздуха соответственно. Итак, формула расчета вентиляции, включающая нужное количество воздуха выглядит так:

L=n*V (м 3 /час) , где

n - нормируемая кратность воздухообмена, час-1;

V - объём помещения, м 3 .

Когда мы считаем воздухообмен для группы помещений в пределах одного здания (к примеру, жилая квартира) или для здания в целом (коттедж), их нужно рассматривать как единый воздушный объём. Этот объём должен отвечать условию ∑ L пр = ∑ L выт То есть, какое количество воздуха мы подаём, такое же должны и удалить.

Таким образом, последовательность расчета вентиляции по кратностям следующая:

  1. Считаем объем каждого помещения в доме (объем=высота*длина*ширина ).
  2. Подсчитываем для каждого помещения объем воздуха по формуле: L=n*V .

Для этого предварительно выбираем из таблицы 1 норму по кратности воздухообмена для каждого помещения. Для большинства помещений нормируется только приток или только вытяжка. Для некоторых, например кухня-столовая и то и другое. Прочерк означает, что в данное помещение не нужно подавать (удалять) воздух.
Для тех помещений, для которых в таблице вместо значения кратности воздухообмена указан минимальный воздухообмен (например, ≥90 м 3 /ч для кухни), считаем требуемый воздухообмен равным этому рекомендуемому. В самом конце расчета, если уравнение баланса (∑ L пр и ∑ L выт ) у нас не сойдется, то значения воздухообмена для данных комнат мы можем увеличивать до требуемой цифры.

Если в таблице нет какого-либо помещения, то норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м 3 /час свежего воздуха на 1 м 2 площади помещения. Т.е. считаем воздухообмен для таких помещений по формуле: L=S помещения *3 .

Все значения L округляем до 5 в большую сторону, т.е. значения должны быть кратны 5.

  1. Суммируем отдельно Lтех помещений Lтех помещений , для которых нормируется вытяжка. Получаем 2 цифры: ∑ L пр и ∑ L выт.
  2. Составляем уравнение баланса ∑ L пр = ∑ L выт .

Если ∑ L пр > ∑ L выт , то для увеличения ∑ L выт до значения ∑ L пр увеличиваем значения воздухообмена для тех помещений, для которых мы в 3 пункте приняли воздухообмен равным минимально допустимому значению.
Рассмотрим расчеты на примерах.

Пример 1: Расчет по кратностям.

Есть дом площадью 140 м 2 с помещениями: кухня (s 1 =20 м 2), спальня (s 2 =24 м 2), кабинет (s 3 =16 м 2), гостиная (s 4 =40 м 2), коридор (s 5 =8 м 2), санузел (s 6 =2 м 2), ванная (s 7 =4 м 2), высота потолков h=3,5м. Нужно составить воздушный баланс дома.

  1. Находим объёмы помещений по формуле V=s n *h , они составят V 1 =70 м 3 , V 2 =84 м 3 , V 3 =56 м 3 , V 4 =140 м 3 , V 5 =28 м 3 , V 6 =7 м 3 , V 7 =14 м 3 .
  2. Теперь посчитаем нужное количество воздуха по кратностям (формула L=n*V ) и запишем в таблицу, предварительно округлив единичную часть до пяти в большую сторону. При расчете кратность n берем с таблицы 1, получаем следующие значения нужного количества воздуха L :

Таблица 2. Расчет по кратностям.

Примечание: В таблице 1 нет позиции, которая регламентировала бы кратность воздухообмена в помещении Гостиной. Поэтому норму воздухообмена для него считаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м 3 /час свежего воздуха на 1 м 2 площади помещения. Т.е. считаем по формуле: L=S помещения *3 .

Таким образом, L пр.гостинная = S гостинная *3 =40*3=120 м 3 /час.

  1. Суммируем отдельно L тех помещений , для которых нормируется приток воздуха, и отдельно L тех помещений , для которых нормируется вытяжка:

∑ L при т =85+60+120=265 м 3 /час;
∑ L выт = 90+50+25=165 м 3 /час.

4. Составим уравнение воздушного баланса. Как видим ∑ L прит > ∑ L выт , поэтому увеличиваем значение L выт того помещения, где мы взяли значение воздухообмена равным минимально допустимому. У нас такие все три помещения (кухня, санузел, ванная). Увеличим L выт для кухни до значения L выт кухн =190. Таким образом, суммарное ∑ L вы т =265м 3 /час. Условие таблицы 1 (табл. 4 ДБН В.2.2-15-2005 Жилые здания ) выполнено: ∑ L пр = ∑ L выт .

Нужно заметить, что в помещениях ванны, санузла и кухни мы организовываем только вытяжку, без притока, а в помещениях спальни, кабинета и гостиной только приток. Это для предотвращения перетекания вредностей в виде неприятных запахов в жилые помещения. Также, это видно по таблице 1, в ячейках притока напротив этих помещений стоят прочерки.

Пример 2. Расчет по санитарным нормам.

Условия остаются прежние. Только добавим информацию, что в доме живут 2 человека, и проведем расчет по санитарным нормам.

Напомню, что по санитарным нормам на одного постоянно пребывающего в помещении человека необходимо 60 м 3 /час свежего воздуха, а на одного временного 20 м 3 /час.

Получим, что для спальни L 2 =2*60=120 м 3 /час, для кабинета примем одного постоянного жителя и одного временного L 3 =1*60+1*20=80 м 3 /час. Для гостиной принимаем двух постоянных жителей и двух временных (как правило, количество постоянных и временных людей, определяется техническим заданием заказчика) L 4 =2*60+2*20=160 м 3 /час, запишем полученные данные в таблицу.

Таблица 3. Расчет по санитарным нормам.

Составив уравнение воздушных балансов ∑ L пр = ∑ L выт :165<360 м 3 /час, видим, что количество приточного воздуха превышает вытяжной на L =195 м 3 /час. Поэтому количество вытяжного воздуха необходимо увеличить на 195 м 3 /час. Его можно равномерно распределить между кухней, санузлом и ванной, а можно подать в одно из этих трех помещений, например кухню. Т.е. в таблице изменится L выт.кухн я и составит L выт.кухня =285 м 3 /час. Из спальни, кабинета и гостинной воздух будет перетекать в ванную, санузел и кухню, а оттуда посредством вытяжных вентиляторов (если они установлены) или естественной тяги удалятся из квартиры. Такое перетекание необходимо для предотвращения распространения неприятных запахов и влаги. Таким образом, уравнение воздушных балансов ∑ L пр = ∑ L вы т: 360=360 м 3 /час - выполняется.

Пример 3. Расчет по площади помещения.

Данный расчет сделаем, учитывая что для жилых помещений нормы регламентируют подавать 3 м 3 /час свежего воздуха на 1 м 2 площади помещения. Т.е. считаем воздухообмен по формуле: ∑ L= ∑ L пр = ∑ L выт =∑ S помещения *3 .

∑ L выт 3 =114*3=342м 3 /час.

Сравнение расчетов.

Как мы видим варианты расчетов отличаются количеством воздуха (∑ L выт1 =265 м 3 /час < ∑ L выт3 =342 м 3 /час < ∑ L выт2 =360 м 3 /час). Все три варианта являются правильными согласно норм. Однако, первый третий более простые и дешевые в реализации, а второй немного дороже, но создает более комфортные условия для человека. Как правило, при проектировании выбор варианта расчета зависит от желания заказчика, точнее от его бюджета.

Подбор сечения воздуховода

Теперь, когда мы посчитали воздухообмен, можем выбрать схему реализации системы вентиляции и произвести расчет воздуховодов системы вентиляции.

В системах вентиляции используют два типа жестких воздуховодов - круглые и прямоугольные. В прямоугольных воздуховодах, для уменьшения потерь давления и снижению шума, соотношение сторон должно не превышать значение три к одному (3:1). При выборе сечения воздуховодов нужно руководствоваться тем, что скорость в магистральном воздуховоде должна быть до 5 м/с, а в ответвлениях до 3 м/с. Рассчитать размеры сечения воздуховода можно определяются по диаграмме приведенной ниже.


Диаграмма зависимости сечения воздуховодов от скорости и расхода воздуха

На диаграмме горизонтальные линии отображают значение расхода воздуха, а вертикальные линии - скорость. Косые линии соответствуют размерам воздуховодов.

Подбираем сечение ответвлений магистрального воздуховода (которые заходят непосредственно в каждую комнату) и самого магистрального воздуховода для подачи воздуха расходом L =360 м 3 /час.

Если воздуховод с естественной вытяжкой воздуха, то нормируемая скорость движения воздуха в нем не должна превышать 1м/час. Если же воздуховод с постоянно работающей механической вытяжкой воздуха, то скорость движения воздуха в нем выше и не должна превышать 3 м/с (для ответвлений) и 5 м/с для магистрального воздуховода.

Подбираем сечение воздуховода при постоянно работающей механической вытяжке воздуха.

Слева и справа на диаграмме обозначены расходы, выбираем наш (360 м 3 /час). Далее, движемся по горизонтали до пересечения с вертикальной линией соответствующей значению 5 м/с (для максимального воздуховода). Теперь, по линии скорости опускаемся вниз до пересечения с ближайшей линией сечения. Получили, что сечение нужного нам магистрального воздуховода 100х200 мм или Ø150 мм. Для подбора сечения ответвления движемся от о расхода 360 м 3 /час по прямой до пересечения со скоростью 3 м 3 /час. Получаем сечение ответвления 160х200 мм или Ø 200 мм.

Эти диаметры будут достаточными при установке только одного вытяжного канала, например на кухне. Если же в доме будет установлено 3 вытяжных вентканала, например в кухне, санузле и ванной комнате (помещения с самым загрязненным воздухом), то суммарный расход воздуха, который нужно отвести мы делим на количество вытяжных каналов, т.е. на 3. И уже на эту цифру подбираем сечение воздуховодов.

По данному графику подобрать сечения на такие небольшие расходы довольно сложно. Мы считаем их в специальной программе. Поэтому, если нужно - спрашивайте, посчитаем.

Естественная вытяжка воздуха. Данная диаграмма подходит только для подбора сечений механической вытяжки. Естественная вытяжка подбирается вручную или же с использованием программ подбора сечений. Опять же, спрашивайте, посчитаем.

Примечание: В нашем примере его не было, но особое внимание следует обратить на помещение плавательного бассейна, когда оно есть в доме. Бассейн это помещение с избыточным количеством влаги и при расчете необходимого воздухообмена требуется индивидуальный подход. Из практики могу сказать, что расход получается не менее восьми крат. Это довольно большой расход и если учесть, что температура приточного воздуха должна быть на 1-2°С выше температуры воды в бассейне, то затраты на нагрев воздуха в зимний период очень велики. Поэтому для помещений плавательных бассейнов более логично использовать системы осушения воздуха. Эти системы работают по такой схеме - осушитель забирает влажный воздух из помещения, пропуская через себя, удаляет из него влагу (путем его охлаждения), после подогревает до заданной температуры и подает назад в помещение. Так же, существуют системы осушения воздуха с возможностью подмеса свежего воздуха.

Схема вентиляции сугубо индивидуальна для каждого дома и зависит от архитектурных особенностей дома, от пожеланий заказчика и т.д. Между тем, есть некоторые условия, которые необходимо соблюдать, и они касаются всех схем без исключения.

Общие требования к системам вентиляции

  1. Вытяжной воздух выбрасываем наружу выше кровли. При естественной вытяжной вентиляции, все каналы выводят выше кровли. При механической вытяжной вентиляции - воздуховод так же выводят выше кровли либо внутри здания, либо снаружи.
  2. Забор свежего воздуха при механической системе приточной вентиляции осуществляется с помощью заборной решетки. Ее необходимо размещать минимум на два метра выше уровня земли.
  3. Движение воздуха необходимо организовывать таким образом, чтобы воздух из жилых помещений двигался в направлении помещений с выделением вредностей (санузел, ванная, кухня).

В этой статье мы разобрали, какими бывают системы вентиляции и как рассчитывается необходимый воздухообмен. Эта информация поможет Вам правильно подобрать систему вентиляции и обеспечить максимально комфортный для жизни микроклимат в Вашем доме.

В Приложении к статье Вы найдете нормативные документы, в которых изложен вопрос Вентиляции с нормативной точки зрения.

Регулярная вентиляция жилых и общественных зданий обес­печивает своевременное удаление избытка тепла, влаги и вред­ных газообразных примесей, скапливающихся в воздухе в ре­зультате пребывания людей и различных бытовых процессов.

Воздух плохо вентилируемых жилищ и других закрытых поме­щений вследствие изменений в химическом и бактериальном составе, физических и других свойств способен оказать вредное влияние на состояние здоровья, вызывая или ухудшая течение заболеваний легких, сердца, почек и др. Установлено, что продолжительное вдыхание такого воздуха в сочетании с неблагопри­ятными температурно-влажностным и аэроионным режимами су­щественно влияет на нервную систему и общее самочувствие человека (головная боль, потеря аппетита, понижение работо­способности и др.). Все это говорит о большом гигиеническом значении вентиляции жилых помещений, так как чистый воздух составляет, по мнению Ф.Ф. Эрисмана, одну из первых эстети­ческих потребностей человеческого организма.

Величина необходимого обмена комнатного воздуха с наруж­ным зависит от числа людей, находящихся в помещении, его кубатуры и характера проводимой работы. Она может быть оп­ределена на основе различных показателей, и в качестве одного из них, распространенного в санитарной практике при обсле­довании жилых помещений, взято содержание двуокиси угле­рода. Вентиляция не должна допускать превышения содержа­ния углекислоты в помещении выше 1 %о, которое принято в качестве допустимой концентрации для обычных жилых по­мещений, классов, больничных палат и др.

Чистота воздуха в помещениях обусловливается обеспечением для каждого человека необходимого объема воздуха - так на­зываемого воздушного куба - и его регулярной сменой наруж­ным воздухом. Количество необходимого для этого вентиляци­онного воздуха на одного человека в час называется объемом вентиляции.

В жилых помещениях норма воздушного куба составляет 25- 27 м3, объем вентиляции - 37,7 м3, поэтому для полного уда­ления испорченного воздуха и замены его чистым атмосфер­ным воздухом необходимо обеспечить примерно 1,5-2-кратный обмен комнатного воздуха с наружным в течение I ч. Таким образом, кратность воздухообмена служит основным критерием интенсивности вентиляции. Ее вычисляют путем де­ления количества воздуха, поступающего в течение 1 ч в поме­щение, на его кубатуру.

В помещениях, где производят тяжелую физическую работу, например в спортивных залах, указанные размер воздушного куба и объем вентиляции будут недостаточными и кратность воздухообмена повышается, однако в пределах допускаемых ве­личин, не вызывающих сильных токов воздуха. В детских уч­реждениях объем вентиляции может быть меньше. Он также дифференцируется в зависимости от назначения отдельных общественных зданий (больницы, школы и др.).

При нормировании объема вентиляции иногда вместо крат­ности воздухообмена указывают количество приточного или удаляемого воздуха из расчета на одного человека в час.

Естественной вентиляцией называют инфильтрацию наруж­ного воздуха через различные щели и неплотности в окнах, дверях и отчасти через поры строительных материалов в поме­щениях, а также проветривание их с помощью открытых окон, форточек и других отверстий, устраиваемых для усиления ес­тественного воздухообмена.

В том и другом случаях обмен воз­духа происходит вследствие разницы температуры наружного и комнатного воздуха и давления ветра. Наиболее интенсивен этот обмен при открытой системе застройки, когда здания уда­лены друг от друга и в воздухообмене участвуют все четыре их стороны, а комнаты расположены по двум противоположным фасадам, что создает сквозное проветривание.

Воздухообмен за счет инфильтрации обеспечивает лишь 0,5- 0,75-кратный обмен воздуха в течение 1 ч. Так как этого недо­статочно, то используют форточки и фрамуги, откидывающиеся под углом 45° внутрь помещения (рис. 4.5). В этом случае холод­ный воздух поступает в помещение сначала вверх, под потолок, а затем, частично обогретый, спускается вниз, не образуя резких токов и не вызывая сильного охлаждения людей. Размер фор-

Рис. 4.5. Фрамуга, а - поступление наружного воздуха; б - поступление воздуха в помеще­ние.

точек должен быть не менее 1/50 площади пола. В холодное вре­мя года более эффективно проветривание при полностью и час­то открываемых на 5-10 мин форточках, чем при приоткрытых на долгий срок форточках. Бояться кратковременного пониже­ния температуры в помещении не следует, так как стены и об­становка охлаждаются за это время незначительно и по оконча­нии проветривания температура воздуха быстро восстановится, главное - в этом случае произойдет более полная смена воздуха.

В многоэтажных зданиях для усиления естественной венти­ляции во внутренних стенах устраивают вытяжные каналы, в верхней части которых находятся приемные отверстия. Кана­лы выводят на чердак в вытяжную шахту, из нее воздух посту­пает наружу. Эта система вентиляции работает на естественной тяге благодаря образующемуся в каналах перепаду давления вследствие температурной разницы, что вызывает движение бо­лее теплого комнатного воздуха вверх. В холодное время года вытяжная система на естественной тяге может обеспечить 1,5- 2-кратный обмен воздуха в 1 ч, в теплое время эффективность ее незначительная из-за небольшой разницы температуры ком­натного и наружного воздуха.

Искусственная вентиляция. В общественных зданиях, рассчи­танных на пребывание большого количества людей, в больницах, школах, на производстве одной естественной вентиляции бывает недостаточно, чтобы обеспечить надлежащее санитарное состо­яние воздуха. Кроме того, в больницах и детских учреждениях в холодное время года ею не всегда можно широко пользоваться ввиду опасности образования холодных потоков воздуха. В связи с этим устраивают механическую вентиляцию, которая не зави­сит от наружной температуры и давления ветра и обеспечивает при известных условиях подогрев, охлаждение и очистку наруж­ного воздуха. Вентиляция может быть местной - для одного по­мещения и центральной - для всего здания.

Для местной вентиляции используют электровентиляторы приточного или вытяжного действия, которые устанавливают в окнах или проемах стен. В общественных зданиях они рас­считаны главным образом на кратковременное действие. В ау­диториях, спортивных залах вентиляторы работают в переры­вах между занятиями, а в ряде помещений с загрязненным воздухом - периодически. На производстве они функциони­руют более продолжительное время. Чаще всего применяют местную вытяжную вентиляцию, удаляющую испорченный воздух, а приток чистого воздуха осуществляется за счет пос­тупления через окна и форточки. В помещениях с повышен­ным загрязнением воздуха (кухни, туалеты) устанавливают только вытяжные вентиляторы.

Однако местная вентиляция имеет определенные недостатки. При использовании приточной системы в зимнее время обра­зуются холодные токи воздуха в помещении, работа вентилято-

Рис. 4.6. Схема приточи о-вытяжной искусственной центральной вен­тиляции.

ров нередко сопровождается значительным шумом, они портят внешний вид помещений. Наиболее современный тип местной вентиляции представляют собой установки для кондициониро­вания воздуха.

Центральная вентиляция рассчитана на обмен воздуха во всем здании или в основных его помещениях, функционирует пос­тоянно или на протяжении большей части дня, В зависимости от назначения помещений центральная вентиляция бывает при­точной, вытяжной иди приточно-вытяжной, совмещающей по­дачу чистого воздуха с удалением испорченного.

На рис. 4.6 изображена схема приточно-вытяжной вентиля­ции. Наружный чистый воздух, например из сада, забирается с помощью вентиляторов, иногда на значительном расстоянии от здания, и направляется по каналу в приточную камеру, где очищается от пыли, проходя через тканевые или другие филь­тры. В холодное время года воздух подогревают до 12-14 °С, в некоторых случаях увлажняют и подают в помещения по ка­налам во внутренних стенах. Приточные каналы оканчиваются отверстиями в верхней части стен, чтобы исключить непос­редственное действие на людей более холодных токов воздуха, и прикрываются решетками. Для удаления испорченного воз­духа прокладывают другую вытяжную сеть каналов, отверстия которых располагают в нижней части противоположной внут­ренней стены; каналы выводят на чердак в общий коллектор, из которого воздух удаляют наружу с помощью вентилятора.

Приточно-вытяжная система вентиляции обеспечивает пре­обладание притока воздуха над вытяжкой, что особенно важно в операционных отделениях больниц. В душевых, туалетах, кух­нях, как уже указывалось, устраивают только вытяжку. Во мно­гих зданиях в целях экономии также устраивают только вытяж­ную вентиляцию с расчетом на поступление чистого воздуха через форточки,

В гигиеническом отношении более предпочтительна приточ­но-вытяжная система вентиляции, которая обеспечивает при­ток чистого подогретого и при необходимости увлажненного воздуха, что позволяет лучше поддерживать нормальный тем­пературно-влажностный режим в помещениях.

В настоящее время разработана новая, более совершенная система вентиляции - кондиционирование воздуха, которая позволяет поддерживать автоматически в течение необходимо­го времени оптимальные условия температуры, влажности, движения и чистоты воздуха. Для этого используют централь­ные установки кондиционирования воздуха, предназначенные для обслуживания общественных зданий (больниц, школ и др.), железнодорожных вагонов, и комнатные кондиционеры для от­дельных небольших по объему помещений.

На рис. 4.7 приведена схема установки для кондиционирова­ния воздуха. Наружный воздух, поступающий в кондиционеры, подогревают или охлаждают до требуемой температуры, увлаж-

Рис. 4.7. Схема установки для кондиционирования воздуха.

I - отверстие для засасывания наружного воздуха; 2 -отверстие для поступле­ния воздуха в помещение; 3 - фильтр; 4 - форсунки; 5 - труба, подающая воздух в форсунки; 6 - трубопровод для подачи в систему свежей охлажденной или по­догретой воды; 7 - насос; 8 - электромотор; 9 - увлажнительные камеры.

Центральный научно исследовательский
и проектно экспериментальный институт
инженерного оборудования городов, жилых и общественных зданий
(ЦНИИЭП инженерного оборудования) Госкомархитектуры

Справочное пособие к СНиП

Серия основана в 1989 году

ОТОПЛЕНИЕ И ВЕНТИЛЯЦИЯ ЖИЛЫХ ЗДАНИЙ

МОСКВА

СТРОЙИЗДАТ

Рекомендовано к изданию секцией отопления , вентиляции и кондиционирования воздуха Научно -технического совета ЦНИИЭП инженерного оборудования Госкомархитектуры

ПРЕДИСЛОВИЕ

Пособие разработано в соответствии со СНиП 2.08.01-89 Жилые здания. Установленные СНиПом параметры микроклимата в помещениях жилых домов и воздушно-тепловой режим определяются не только работой систем отопления и вентиляции, но и архитектурно-планировочными и конструктивными решениями этих зданий, а также теплофизическими характеристиками ограждающих конструкций. Кроме перечисленного, в жилых зданиях большое влияние на микроклимат оказывают особенности эксплуатации квартир жильцами. Совокупность этих факторов определяет эксплуатационные расходы теплоты и уровень воздушно-теплового комфорта. С учетом этого организация и рациональное поддержание воздушно-теплового режима в жилых зданиях является комплексной задачей. Однако действующая система нормативных документов, специализированная по отдельным разделам проектирования, не учитывает этой комплексности.

Проектирование систем отопления и вентиляции осуществляется в соответствии с требованиями СНиП 2.04.05-86. При этом используются справочные пособия к СНиПу, справочники, рекомендательная и другая литература, содержащая методы теплового и гидравлического расчета систем, указания по их конструированию, характеристики оборудования. Перечисленные документы, ориентированные на специалистов в области проектирования отопительно-вентиляционных систем, затрагивают далеко не весь комплекс вопросов обеспечения нормируемого воздушно-теплового режима в помещениях жилых зданий при минимальном расходе тепловой энергии. Поэтому при составлении настоящего Пособия основное внимание уделено вопросам, наиболее часто возникающим у проектировщиков и свидетельствующим не только о недостаточной четкости отдельных положений нормирования, но и отсутствии в ряде случаев понимания значимости различных элементов жилых зданий в их воздушно-тепловом режиме.

Пособие разработано ЦНИИЭП инженерного оборудования Госкомархитектуры (кандидаты техн. наук А.З. Ивянский и И.Б. Павлинова).

1. КОНСТРУКТИВНО-ПЛАНИРОВОЧНЫЕ РЕШЕНИЯ ЖИЛЫХ ЗДАНИЙ

1.1. Воздушно-тепловой режим в помещениях является одним из основных факторов, определяющих уровень комфорта жилых зданий. Неудовлетворительный микроклимат делает их непригодными для проживания.

1.2. Оптимизация воздушно-теплового режима квартир требует их изоляции от смежных помещений с целью максимального сокращения количества перетекающего воздуха.

Перетекание воздуха в квартиры из смежных квартир и (или) лестничной клетки является одной из основных причин, снижающих эффективность работы системы вентиляции и приводящих к неудовлетворительному состоянию воздушной среды в квартирах. С учетом этого в строительной части проекта жилого здания должны быть предусмотрены планировочные, конструктивные и технологические решения, максимально сокращающие возможность перетекания воздуха через входные двери в квартиры, места сопряжений ограждающих конструкций, прохождения через них инженерных коммуникаций и др.

1.3. Как показывает опыт эксплуатации современных жилых зданий массовой застройки, одной из самых распространенных причин недогрева помещений при расчетной теплоотдаче системы отопления является фактическое занижение сопротивления воздухопроницанию оконного заполнения против регламентированного СНиП II-3-79 ** для предусмотренной проектом конструкции окон. Это занижение имеет место вследствие низкого качества изготовления оконных блоков; некачественной заделки оконных блоков в стеновую панель; отсутствия уплотняющих притворы прокладок или их несоответствия проектным и т.п.

Для исключения недогрева помещений жилых домов при низких температурах наружного воздуха в результате отмеченного выше фактора рекомендуется проводить выборочные натурные испытания окон с целью определения их фактического сопротивления воздухопроницанию, характерного для конкретного района застройки, например по методике натурных испытаний воздухообмена жилых домов ЦНИИЭП инженерного оборудования.

1.4. Размеры световых проемов определяют не только расчетные теплопотери помещений, но и тепловой режим в них за счет отрицательной радиации и ниспадающих потоков холодного воздуха в зимний период и перегрева - в летний. Поэтому следует стремиться к минимально допустимым размерам световых проемов из условий естественного освещения, но не более чем при соотношении их площади к площади пола соответствующих помещений 1:5,5.

1.5. При выборе конструктивного решения чердаков преимущество следует отдавать посекционным теплым чердакам, используемым в качестве камеры статического давления системы естественной вытяжной вентиляции. Открытые чердаки с выпуском в них вытяжного воздуха требуют дальнейших исследований и конструктивного совершенствования, и для использования в массовом жилищном строительстве в настоящее время не рекомендуются. В зданиях высотой менее 5 этажей, в которых устройство теплого чердака нецелесообразно, вытяжные каналы должны непосредственно выходить в шахты, выводимые выше уровня кровли.

1.6. Зонирование квартир сопряжено с увеличением количества инженерных коммуникаций, что приводит к возрастанию материалоемкости и эксплуатационных затрат. Наличие вытяжных каналов в разных местах квартиры существенно снижает надежность и эффективность системы естественной вытяжной вентиляции.

1.7. Примыкание санитарных узлов и вентблоков к наружным стенам квартир затрудняет обеспечение удовлетворительного влажностного режима в санитарных помещениях и требует специальных решений по повышению температуры их ограждений, которые подлежат разработке и проверке в массовом строительстве.

1.8. Планировочные решения квартир с точки зрения организации вентиляции преимущественно должны быть направлены на исключение горизонтальных воздуховодов в пределах квартиры; на обеспечение непосредственного поступления воздуха из кухни, ванной и туалета в вентблок; на обеспечение доступа к вентблокам при монтаже, а также для ревизии и герметизации стыков при эксплуатации.

1.9. В подвалах и цокольных этажах квартирных домов и общежитий с системами отопления, подключаемыми к сетям централизованного теплоснабжения, при расчетных теплопотерях зданий за отопительный период 1000 ГДж и более следует предусматривать помещение для размещения индивидуального теплового пункта (ИТП).

Помещение ИТП должно иметь высоту (в чистоте) не менее 2,2 м, в местах прохода к нему обслуживающего персонала - не менее 1,9 м; должно быть отделено от других помещений, иметь открывающуюся наружу дверь, освещение. Пол должен иметь бетонное или плиточное покрытие с уклоном 0,005. В полу ИТП следует устанавливать трап, а при невозможности самотечного отвода воды устраивать водосборный приямок размерами 0,5´0,5´0,8 м, перекрываемый съемной решеткой. Для откачки воды из приямка в систему канализации следует устанавливать дренажный насос.

Расчетные теплопотери здания за отопительный период рекомендуется определять в соответствии с разд. настоящего Пособия.

1.10. Применение кухонь-ниш с механической вытяжной вентиляцией допускается только в жилых зданиях, все квартиры которых оборудованы механической вытяжкой.

1.11. Устройство лоджий с поэтажными выходами из лестничной клетки сопряжено с существенным дополнительным расходом теплоты и не рекомендуется, если это не связано с противопожарными требованиями.

1.12. При технико-экономическом обосновании конструктивного решения чердака, кроме традиционных факторов, следует учитывать также затраты на изоляцию размещенных в них инженерных коммуникаций и на их эксплуатацию.

2. РАСЧЕТ ТЕПЛОПОТЕРЬ

2.1. Расчетные потери теплоты, возмещаемые отоплением, следует определять из теплового баланса. Тепловой баланс жилого здания в целом и каждого отапливаемого помещения находят из уравнения

Q тр + Q в + Q c.о + Q инс + Q быт = 0, (1)

где Q тр - трансмиссионные потери теплоты через ограждения здания (помещения); Q в - затраты теплоты на нагрев наружного воздуха в объеме инфильтрации или санитарной нормы; Q с.о - тепловая мощность системы отопления, которая является искомой величиной при определении теплового баланса; Q инс - теплопоступления за счет солнечной радиации; Q быт - суммарные теплопоступления за счет всех внутренних источников теплоты, за исключением системы отопления (к бытовым условно относятся тепловыделения от электробытовых и осветительных приборов, кухонных плит, разводки трубопроводов горячего водоснабжения и непосредственно потребляемой горячей воды, людей, находящихся в квартире).

2.2. Расчет трансмиссионных теплопотерь через наружные ограждающие конструкции производится по прил. 8, СНиП 2.04.05-86. При этом расчетные температуры воздуха помещений tрасч принимаются в соответствии со СНиП 2.08.01-89 Жилые здания.

2.3. При расчете трансмиссионных теплопотерь через внутренние ограждения жилых домов следует учитывать теплопередачу:

а) через чердачные перекрытия в домах с теплым чердаком;

б) через перекрытия над неотапливаемыми подвалами и подпольями (в том числе при размещении в них теплопроводов);

в) через внутренние ограждения лестничной клетки (в том числе незадымляемой).

При этом коэффициент п принимают равным 1.

Температуру воздуха в подвалах (подпольях) и теплых чердаках следует определять из теплового баланса этих помещений (при составлении теплового баланса теплого чердака могут быть использованы Рекомендации по проектированию железобетонных крыш с теплым чердаком для многоэтажных жилых зданий/ЦНИИЭП жилища, 1986).

После определения температуры воздуха по пп. а и б при заданных строительных конструкциях следует проверить соблюдение нормируемой величины Dtн по табл. 2 СНиП II-3-79 ** Строительная теплотехника.

В лестничных клетках домов с квартирным отоплением расчетная температура воздуха не нормируется.

2.4. Расход теплоты на нагрев поступающего в помещения наружного воздуха определяется дважды:

а) исходя из количества инфильтрующегося через неплотности наружных ограждений воздуха;

б) исходя из санитарной нормы вентиляционного воздуха 3 м3/ч на 1 м2 площади пола жилых комнат.

Для жилых комнат из двух полученных величин принимают большую, для кухонь - по п. а .

2.5. Расход теплоты Qi , Вт, на нагрев инфильтрующегося воздуха определяют по формуле

Qi = 0,28 SGikic (tp - ti ), (2)

где Gi - количество инфильтрующегося воздуха, кг/ч, через ограждение помещения, определяемое по формуле (); с - удельная теплоемкость воздуха, равная 1 КДж/(кг×°С); ki - коэффициент учета влияния встречного теплового потока в конструкциях принимается по прил. 9 к СНиП 2.04.05-86; tp , ti - расчетные температуры воздуха, °С, в помещении и наружного воздуха в холодный период года (параметры Б).

Расчет расхода тепла на нагрев инфильтрующегося воздуха для всех помещений жилых зданий (в том числе лестничных клеток, лифтовых холлов, поэтажных коридоров), учитывающий обобщенные результаты натурных испытаний различных элементов ограждений на воздухопроницаемость и результаты машинного счета (в табличной форме), можно осуществлять по материалам ЦНИИЭП инженерного оборудования.

2.6. Расход теплоты Q в, Вт, на нагрев санитарной нормы вентиляционного воздуха определяют по формуле

Q в = (tp - ti ) А п, (3)

где A п - площадь пола жилого помещения, м2.

2.7. Количество инфильтрующегося в помещение воздуха SGi , кг/ч, следует определять по формуле*

* Интерпретация формулы (3) прил. 9 СНиП 2.04.05-86 для жилых зданий.

где A1, А2 - площади соответственно окон (балконных дверей) и наружных дверей, м2, l - длина стыков стеновых панелей, м; R 1 и R 2 - сопротивление воздухопроницанию соответственно окон (м2×ч (даПа)2/3/кг) и дверей (м2×ч (даПа)0,5/кг); определяют по СНиП II-3-79 ** (прил. 10) и СНиП 2.04.05-86 (прил. 9) или по результатам натурных испытаний; Dp - расчетная разность давлений на наружной и внутренней поверхностях наружных ограждений помещения, даПа; Dp1эт - разность давлений Dp, определенная для помещений 1-го этажа, даПа.

2.8. Для жилых зданий с естественной вытяжной вентиляцией расчетную разность давлений D р находят по формуле*

2.11. Расход теплоты, ГДж, за отопительный период SQ находят из выражения

(7)

где Q - расчетный расход теплоты отапливаемым зданием (фасадом); tp - расчетная температура внутреннего воздуха, °С; - средняя за отопительный период температура наружного воздуха, °С, принимаемая по СНиП 2.01.01-82 ; ti - расчетная температура наружного воздуха (параметры Б ), °С; п - количество дней отопительного сезона (продолжительность периода со средней суточной температурой воздуха £ 8 °С), принимаемое по СНиП 2.01.01-82 .

С достаточной степенью точности можно принимать

(tp - )/(t р - ti ) = 0,5.

Таблица 1

Q д - дополнительные потери теплоты, связанные с остыванием теплоносителя в подающих и обратных магистралях, проходящих в неотапливаемых помещениях, кВт. Величину Q д рекомендуется определять при коэффициенте эффективности, изоляции 0,75, по табл. .

Таблица 2

Теплопередача 1 м изолированной трубы, Вт/м, при условном диаметре, мм

* t г - температура теплоносителя на входе в систему отопления (для подающих трубопроводов) или на выходе из нее (для обратных трубопроводов), °С; t в - температура воздуха помещений, в которых проложены трубопроводы, °С; определяют по тепловому балансу этих помещений (см. разд. ).

3.2. Расчетный расход теплоносителя в стояках (ветвях) системы отопления G ст, кг/ч, следует определять по формуле

где Q ст - суммарные теплопотери помещений, обслуживаемых стояком (ветвью) системы отопления, кВт; с в - удельная теплоемкость воды, кДж/(кг×°С); Dt - разность температур теплоносителя на входе и выходе из стояка (ветви). При предварительном расчете Dt рекомендуется принимать на 1 °С меньше расчетного перепада температур теплоносителя в системе отопления.

3.3. Тепловой поток Q отопительного прибора определяют по формуле

(10)

где Q н.п - номинальный тепловой поток отопительного прибора, кВт; п и р - показатели степени соответственно при относительных температурном напоре и расходе теплоносителя; b3 - безразмерный коэффициент, учитывающий число секций в радиаторе (только для чугунных секционных радиаторов); b4 - безразмерный коэффициент, учитывающий способ установки отопительного прибора; b - безразмерный коэффициент на расчетное атмосферное давление; ср - поправочный коэффициент, учитывающий схему присоединения отопительного прибора и изменение показателя степени р в различных диапазонах расхода воды; y 1 - коэффициент, учитывающий уменьшение теплового потока при движении теплоносителя по схеме «снизу-вверх»; М - расход воды через отопительный прибор (для конвекторов - по каждой трубке), кг/с; q - температурный напор, °С.

, (11)

где t н и t к - температура теплоносителя на входе и выходе из отопительного прибора, °С; Dt пр - перепад температур теплоносителя на входе и выходе из отопительного прибора, °С; t в - расчетная температура воздуха отапливаемого помещения, °С.

Значения Q н.п, п , р , b 3 , b , ср , y 1 следует принимать по информационным выпускам институтов Минстройматериалов СССР, справочникам, каталогам и др.

Для наиболее массовых отопительных приборов необходимая информация содержится в следующей литературе:

Методика определения номинального теплового потока отопительных приборов при теплоносителе воде/НИИ сантехники, 1984.

3.4. Соотношение эквивалентных квадратных метров (экм) и киловатт рекомендуется принимать:

для радиаторов и конвекторов без кожуха 1 экм - 0,56 кВт,

для конвекторов с кожухом 1 экм - 0,57 кВт.

Номинальный тепловой поток отопительных приборов в кВт определен при разности средних температур теплоносителя и воздуха 70 °С, расходе теплоносителя через прибор 0,1 кг/с, атмосферном давлении 1013 ГПа.

Фактический тепловой поток от отопительных приборов в системе отопления в зависимости от значений перечисленных факторов будет отличаться от номинального в большую или меньшую сторону. В результате между теплопотерями помещений и номинальным тепловым потоком устанавливаемых в них отопительных приборов отсутствует формальное соответствие в киловаттах (например, в помещении с потерями теплоты 1 кВт по расчету должен быть установлен отопительный прибор с номинальным тепловым потоком 1,3 кВт), что является дефектом нового измерителя отопительных приборов, а не ошибками расчета.

3.5. Системы отопления жилых зданий при расходе теплоты за отопительный период (см. п. настоящего Пособия) 1000 ГДж и более следует проектировать пофасадными для возможности автоматического раздельного регулирования каждого фасада. При расходе теплоты за отопительный период меньше 1000 ГДж (240 Гкал) автоматическое регулирование теплового потока предусматривается при обосновании.

3.6. Автоматическое регулирование расхода теплоты в системах отопления следует проектировать, руководствуясь «Общими положениями по оснащению приборами учета и автоматического регулирования систем газоснабжения, отопления, вентиляции, горячего водоснабжения, тепловых сетей и котельных», утвержденными постановлением Госстроя СССР.

С 1989 г. Московским заводом тепловой автоматики Минприбора СССР начат выпуск микропроцессорных регуляторов «Теплар-110», предназначенных для регулирования двух пофасадных систем отопления и системы горячего водоснабжения жилых домов (одним прибором). «Теплар-110» является наиболее эффективным специализированным регулятором.

3.7. Датчики температуры внутреннего воздуха при автоматизации систем отопления следует устанавливать в воздушном потоке в центре магистральных каналов вентиляционных блоков (при раздельных вентблоках - кухонных) на 700 - 800 мм ниже места слияния канала-спутника со сборным каналом в вентблоке верхнего этажа. При пофасадном регулировании для размещения датчиков рекомендуется использовать вентблоки квартир, помещения которых ориентированы преимущественно на один фасад здания. В домах меридиональной ориентации рекомендуется устанавливать не менее одного датчика в вентблоке квартиры, примыкающей к северному торцу здания. В остальных случаях следует стремиться к минимальной длине соединительных линий датчиков с регулирующими приборами.

3.8. Для многоэтажных жилых зданий основным решением отопления являются однотрубные водяные системы отопления из унифицированных узлов и деталей, с верхним или нижним розливом и искусственным побуждением циркуляции. Для зданий высотой до 10 этажей включительно могут быть использованы однотрубные системы с П (Т)-образными стояками. Параметры теплоносителя в системах водяного отопления следует принимать 105 - 70 °С, при необеспеченности указанных параметров источниками теплоты (индивидуальные или групповые котельные) - 95 - 70 °С.

В качестве отопительных приборов предпочтительны чугунные секционные радиаторы типа МС и стальные конвекторы типа «Универсал», которые обеспечивают регулирование теплового потока «по воздуху» за счет включенного в их конструкцию воздушного клапана, что позволяет не устанавливать перед ними регулировочные краны.

3.9. Системы панельного отопления с нагревательными элементами в однослойных и трехслойных наружных стеновых панелях по сравнению с традиционными системами центрального отопления являются прогрессивным техническим решением, которое при качественном исполнении позволяет повысить индустриальность монтажных работ, удешевить строительство и сократить расход металла при высоком уровне теплового комфорта в обслуживаемых помещениях.

Наряду с этим следует учитывать, что характерный для систем панельного отопления большой объем «скрытых» работ предъявляет повышенные требования к культуре производства и соблюдению технологической дисциплины. В аварийных ситуациях большого масштаба системы панельного отопления требуют более четких действий обслуживающего персонала. В связи с этим решения о применении систем панельного отопления в конкретных городах (районах) принимаются госстроями союзных республик, обл(гор)исполкомами с учетом подготовленности домостроительных комбинатов, теплоснабжающих и эксплуатирующих организаций.

При проектировании систем панельного отопления могут быть использованы «Указания по проектированию и осуществлению систем панельного отопления со стальными нагревательными элементами в наружных стенах крупнопанельных зданий» (СН 398-69) с изменениями, вытекающими из действующих нормативных документов.

3.10. В жилых зданиях, присоединяемых к сетям централизованного теплоснабжения с расчетной температурой теплоносителя (воды) 150 °С при параметрах Б наружного воздуха и гарантированным перепадом давления, может быть использовано система со ступенчатой регенерацией теплоты (СРТ), позволяющая сокращать расход отопительных приборов.

Проектирование системы СРТ осуществляется в соответствии с «Нормами проектирования систем отопления со ступенчатой регенерацией тепла» (РСН 308-85 Госстрой УССР).

3.11. При проектировании систем отопления жилых зданий, возводимых в Северной строительно-климатической зоне, в развитие действующих нормативных документов дополнительно рекомендуется:

а) системы отопления с местными отопительными приборами проектировать с тупиковой разводкой магистральных трубопроводов при числе стояков, присоединяемых к одной ветви, не более 6. При большем числе стояков предусматривать, как правило, попутное движение теплоносителя;

б) для отопления лестничных клеток предусматривать:

высокие стальные конвекторы в вестибюлях, предвключая их системе отопления, с установкой на обеих подводках в местах, недоступных для случайного закрывания запорной арматуры. Нагрузку высоких конвекторов следует принимать равной теплопотерям вестибюля с учетом теплопотерь через входные двери;

стальные конвекторы на этажах, присоединяя их к самостоятельным стоякам по однотрубной проточной схеме. Стояки лестничных клеток в пределах 1 - 2 этажей прокладывать в квартирах, лифтовых холлах или других помещениях, отапливаемых основной системой отопления зданий. Расчетную температуру воздуха в лестничных клетках принимать 18 °С;

в) отопление мусоросборных камер предусматривать, как правило, змеевиками из гладких труб, присоединяемыми к системе отопления по проточной схеме, с установкой запорной арматуры на обеих подводках. Расчетную температуру воздуха в мусоросборной камере принимать 15 °С;

г) неучтенные потери циркуляционного давления в системе отопления принимать равными 25 % максимальных потерь давления;

д) при установке в системах отопления подмешивающих насосов предусматривать резервный насос;

е) в системах отопления жилых зданий с числом этажей 3 и более на каждом стояке предусматривать запорную арматуру для их отключения и спускные краны со штуцером для опорожнения;

ж) прокладывать стояки в местах пересечения перекрытий с использованием гильз;

з) для стояков и подводок к отопительным приборам применять стальные обыкновенные трубы по ГОСТ 3262-75 *.

Все изложенное направлено на повышение надежности систем отопления, сооружаемых в Северной строительно-климатической зоне и отражает опыт натурных обследований.

4. ВЕНТИЛЯЦИЯ

4.1. В массовом жилищном строительстве принята следующая схема вентилирования квартир: отработанный воздух удаляется непосредственно из зоны его наибольшего загрязнения, т.е. из кухни и санитарных помещений, посредством естественной вытяжной канальной вентиляции. Его замещение происходит за счет наружного воздуха, поступающего через неплотности наружных ограждений (главным образом оконного заполнения) всех помещений квартиры и нагреваемого системой отопления. Таким образом обеспечивается воздухообмен во всем ее объеме.

При посемейном заселении квартир, на которое ориентировано современное жилищное строительство, внутриквартирные двери, как правило, открыты или имеют подрезку дверного полотна, уменьшающую их аэродинамическое сопротивление в закрытом положении. Так, например, щель под дверями ванной и уборной должна быть не менее 0,02 м высотой.

Квартира рассматривается в качестве единого воздушного объема с одинаковым давлением.

Нормирование воздухообмена производят исходя из минимально необходимого по гигиеническим требованиям количества наружного воздуха на одного человека (примерно 30 м3/ч) и к площади пола относят условно. Возрастание нормы заселения, равно как и увеличение высоты помещений, с указанным количеством воздуха не связано.

Удалять воздух непосредственно из комнат в многокомнатных квартирах не рекомендуется, так как при этом нарушается схема направленного движения воздуха в квартире.

4.13. Повышение эксплуатационной надежности (предотвращение «опрокидывания» потока воздуха) системы естественной вытяжной вентиляции и одновременно сокращение материалоемкости и трудозатрат достигаются при использовании одной вертикали вытяжных каналов на квартиру путем использования объединенных вентблоков. Пример решения объединенного вентблока, совмещенного с санитарно-технической кабиной, представлен на рис. .

Рис. 3. Объединенный вентблок, совмещенный с сантехкабиной

1 - «колпак» с вентблоком; 2 - днище снтехкабины; 3 - прокладка уплотнительная; 4 - проволочные ограничители, 5 - междуэтажное перекрытие

Применение двух объединенных или объединенного и раздельного вентблоков в зонированных квартирах ведет, как правило, к чрезмерной интенсификации воздухообмена и поэтому нежелательно.

При применении двух вентблоков в одной вертикали квартир необходимо обеспечить одинаковые условия истечения вентиляционного воздуха в атмосферу (в частности, отметку выброса в случае самостоятельных шахт).

4.14. Применение одинаковых вентблоков по высоте здания предопределяет неравномерность удаления воздуха по вертикали квартир.

Повышение равномерности распределения расходов воздуха достигается при увеличении сопротивления входа в вентблок или обеспечении переменной по высоте здания величины сопротивления входа в вентблок. Последнее можно осуществить с помощью вентиляционных решеток с монтажной регулировкой (например, конструкции ЦНИИЭП инженерного оборудования) или специальных накладок (например, из оргалита) с отверстиями разной площади на вход в вентблок.

Расширение области применения вентблоков для зданий различной этажности и изменение их номинальной производительности (см. п. ) возможны с помощью специально рассчитанных накладок.

4.15. Конструкция и технология монтажа вентиляционных блоков должны предусматривать возможность герметизации их междуэтажных стыков.

Герметичность вентиляционной сети имеет особое значение для естественной вытяжной вентиляции. Наличие неплотностей приводит не только к избыточному воздухообмену в квартирах нижних этажей многоэтажных зданий, но и к выбросам загрязненного воздуха через них из сборного канала в квартиры верхних этажей. В проектах необходимо предусматривать специальную технологию заделки междуэтажных стыков вентблоков с применением упругих прокладок.

4.16. Устойчивое удаление воздуха из квартир верхних этажей обеспечивается при правильном выборе вентблоков для зданий конкретной этажности и конструкции чердака.

Установка вытяжных вентиляторов на входе в вентблок двух верхних этажей, предусмотренная СНиПом, ухудшает воздухообмен в квартирах, так как вентиляторы не рассчитаны на постоянную работу, а в период бездействия затрудняют удаление воздуха из-за чрезмерного сопротивления.

4.17. Конструкции транзитных участков вентблоков, проходящих через холодный или открытый чердаки, а также вентиляционных шахт на кровле должны иметь термическое сопротивление не менее чем термическое сопротивление наружных стен жилых зданий в данном климатическом районе. Для уменьшения массы и габаритов указанных конструкций, предусматриваемое настоящим пунктом, термическое сопротивление может быть достигнуто за счет эффективной теплоизоляции. То же относится к вентиляционным участкам канализационных стояков и мусоропровода.

На сегодняшний день в современном строительстве есть отросли, в которых проводятся исследования по усовершенствованию технологии сооружения, также улучшают качества при эксплуатации, не исключением является воздухообмен помещений в здании. Проблемы в этой сфере актуальны и решаются путем подбора кратности под систему вентиляции. Проводятся полномасштабные испытания и на основе их пишутся стандарты. Наиболее преуспевшей страной в этом деле является США. Ими был разработан стандарт ASHRAE, используя опыт других стран, а именно Германии, Дании, Финляндии, и свои научные разработки. На постсоветском пространстве также есть разработанный аналог такого документа. В 2002 году были разработаны АВОК стандарты «нормы воздухообмена общественных и жилых зданий».

Строительство современных сооружений проводится с расчётом повышенного утепления и большой герметичности окон. Поэтому оптимальный обмен воздуха очень важный в подобных случаях для выполнения санитарно-гигиенических норм и соответствующего микроклимата. Также важно не нанести ущерб энергосбережению, чтобы зимой в вентиляцию не вытягивало все тепло, а летом – прохладный воздух с кондиционера.

Чтобы определить расчет воздухообмена в помещениях, кроме больниц, был создан новый метод, который описан в издании ASHRAE 62–1–2004. Его определяется с помощью суммирования показателей значения свежего наружного воздуха, который подается непосредственно для дыхания, учитывая площадь помещения, припадающую на одного человека. В итоге значение получилось значительно ниже, чем поздней редакции ASHRAE.

Нормы воздухообмена в жилых сооружениях

При проведении расчета необходимо используют данные таблицы при условии, что уровень насыщенности вредоносных компонентов не выше норм ПДК.

Помещения Норма воздухообмена Примечания
Жилая зона Кратность 0,35ч-1,
но не менее 30 м³/ч*чел.
При расчете (м 3 /ч) по кратности объема помещения учитывается площадь помещения
3 м³/м²*ч жилых помещений, при площади квартиры меньше 20 м²/чел. Помещения с ограждающими для воздуха конструкциями требуют дополнительный вытяжки
Кухня 60 м³/ч для электрической плиты Подача воздуха в жилые комнаты
90 м³/ч для использования 4-конфорочной газовой плиты
Ванная комната, туалет 25 м³/ч из каждого помещения Так же
50 м³/ч при совмещенном санузле
Прачечная Кратность 5 ч-1 Так же
Гардеробная, кладовая Кратность 1 ч-1 Так же

В случаях неиспользования помещения для жилья показатели уменьшаются таким образом:

  • в зоне проживания на 0,2ч-1;
  • в остальных: кухня, ванная, туалет, кладовая, гардероб на 0,5ч-1.

При этом необходимо избежать попадания проточного воздуха с этих помещений в жилые, если он там присутствует.

В случаях, когда воздух, поступающий в помещение с улицы, проходит большую дистанцию до вытяжки, то увеличивается и кратность воздухообмена. Присутствует еще такое понятие, как запоздание вентиляции, что подразумевает собой отставание попадания кислорода снаружи до начала его использования в помещении. Это время определяется с помощью специальной диаграммы (смотреть на рисунок 1), учитывая наименьшие нормы обмена воздуха в вышеуказанной таблице.

К примеру:

  • расход воздуха 60 м³/ ч*чел;
  • объём жилья 30 м³/чел;
  • время запаздывание 0.6 ч.

Нормы воздухообмена для офисных зданий

Нормы в таких зданиях будут значительно выше, потому что вентиляция должна эффективно справляться с большим количеством углекислоты, выделяемой сотрудниками офиса и находящейся там техники, убирать излишек тепла, при этом подавать чистый воздух. В этом случае не будет достаточно естественной вентиляции, использование такой системы на сегодняшний день не может обеспечить требуемые гигиеничные и воздухообменные стандарты. При строительстве используют герметично закрывающиеся двери и окна, также устройство панорамного остекления полностью ограничивает попадание воздуха снаружи, что приводит к застою воздуха и ухудшению микроклимата жилья и общего состояния человека. Поэтому необходимо проектировать и устанавливать специальную вентиляцию.

В главные требования такой вентиляции входит:

  • возможность обеспечения достаточного объема свежего чистого воздуха;
  • фильтрация и устранение использованного воздуха;
  • отсутствие превышения стандартов по шумности;
  • удобное управление;
  • небольшой уровень энергопотребляемости;
  • возможность вписываться в интерьер и иметь небольшие размеры.

В конференц-залах требуется установка дополнительных приточных устройств, а вытяжку нужно устанавливать в туалетах, коридорах и в залах для копирования. В офисах механическая вытяжка монтируется в случаях, если площадь каждого кабинета превышает 35 кв. м.

Как показывает практика, при неверном распределении большого потока воздуха в офисах с невысокими потолками создается ощущение сквозняка, и в таком случае люди требуют выключить вентиляцию.

Организация воздухообмена в частном доме

Здоровый микроклимат и хорошее самочувствие зависят во многом от правильной организации приточно-вытяжной системы в доме. Зачастую во время проектирования о вентиляции бывает забывают или уделяют мало внимания, думая, что одной вытяжки в туалете будет достаточно для этого. И зачастую воздухообмен организованы неправильно, что приводит ко многим проблемам и таит в себе угрозу для здоровья человека.

В случае, когда имеется недостаточный выход загрязненного воздуха, то в помещении будет большой уровень влажности, возможность заражения стен грибком, запотевание окон и ощущение сырости. А когда есть плохой приток, ощущается недостаток кислорода, большая запыленность и повышенная влажность либо сухость, это зависит от сезона за окном.

Правильно устроенная вентиляция и воздухообмен в доме выглядит таким образом как показано на рисунке.

Поступающий воздух в жилище должен пройди вначале через форточку или открытые створки окна, приточный клапан находится с наружной стороны стены жилища, затем, проходя через комнату, проникает под дверным полотном или через специальные вентиляционные отверстия и попадает в санузлы и кухню. Дольше выходит через систему вытяжек наружу.

Различается способ организации обмена воздуха в применении систем вентиляции: механической или естественной, но во всех случаях поступление воздуха происходит с жилых зон, а выходит в технических: санузел, кухня и другие. При применении любой системы необходимо обязательно устраивать вентиляционные каналы во внутренней части капитальной стены, это позволит избежать так званного опрокидывания потока воздуха, что значит обратное его движение до того, как указано на рисунке 2. По этим каналам отработанный воздух отводится наружу.

Для чего нужен воздухообмен?

Воздухообмен – это расход подаваемого наружного воздуха м3/час, что попадает в здание с помощью системы вентиляции (рисунок 3). Загрязнение среды в жилых комнатах происходит от расположенных в них источников – это может быть мебель, различная ткань, продукты потребления и жизнедеятельности человека, бытовые изделия. Также это случается путем газообразования от воздействия выдыхания углекислого газа человеком и других жизненно важных процессов организма, еще разные технические испарения, которые могут присутствовать на кухне от сгорания газа на плите и много других факторов. Поэтому воздухообмен так необходим.

Чтобы поддерживать нормальные показатели воздуха в жилищи, следует выполнять контроль за насыщенностью углекислого газа СО2 с помощью регулировки системы вентиляции с учетом концентрации. Но есть второй способ, более распространённый – это метод контроля воздухообмена. Он значительно дешевле и во многих случаях эффективнее. Есть упрощенный способ его оценки с помощью таблицы 2.

Но при проектировании механической системы вентиляции в доме или квартире нужно делать расчет.

Как проверить работает ли вентиляция?

Сначала проверяется работает ли вытяжка, для этого необходимо поднести лист бумаги или пламя от зажигалки непосредственно к решётке вентиляции, находящейся в ванной или на кухне. Пламя или лист должны отогнуться в сторону вытяжки, если это так, то она работает, а если такого не происходит, то канал может быть перекрыт, к примеру, забиться листьями или по какой-либо другой причине. Поэтому главная задача – устранить причину и обеспечить тягу в канале.

Свежий воздух в жилом помещении способствует улучшению общего состояния человека. Результат достигается с помощью различных технологий. Человек должен серьёзно отнестись к подбору и установке вентиляционной системы. Ведь большую часть времени он проводит в доме.

Необходимость вентиляционной системы

С совершенствованием жизни человека наметилась тенденция понижения воздухообмена, ухудшилась его пропускная способность. Установка пластиковых окон и дверей, который стали плохо пропускать воздух. Поэтому возникла необходимость в системе вентиляции. Ведь организму человека необходим кислород, свободный от вредных веществ.

Такое упущение приводит к влажности в жилом помещении, которая характеризуется следующими признаками:

  • Запотевание окон
  • Влажность стен
  • Появление плесени и грибка

Мало того, возникают дополнительные проблемы. Это может повлиять на самочувствие человека, вызвать заболевания дыхательных органов. Привести к необходимости проведения ремонта, дополнительных затрат.

Вентиляционные системы

Представлена следующая классификация:

  1. Естественная и искусственная
  2. Приточная и вытяжная
  3. Местная и общеобменная
  4. Наборная и моноблочная


Естественная вентиляция

Характеризуется своей простотой. Не требует затрат денежных средств. Принцип работы следующий:

Воздух поступает и выводится естественным путем через щели и другие легкодоступные места. Здесь действует физический закон, который гласит, что теплый воздух поднимается наверх и уходит в вентиляционный канал, а чистый поступает извне с улицы. Поэтому прямо зависит от внешних условий и погоды. Естественный воздухообмен может достигать 1 м³/час.

Преимущества:

  • Дешёвая
  • Надёжная
  • Долговечная

Проветривать жилое помещение необходимо около часа для того, чтобы поступил новый кислород. В зимнее время достаточно 15 минут, но холодной воздух опасен для здоровья. Есть риск заболеть.

На заметку! Можно установить специальное устройство, так называемый клапан. Он запускает свежий воздух в жилое помещение.


Приточная вентиляция

Главное свойство – принудительность. Воздух поступает через воздушный фильтр и очищается. Равномерно распределяется в помещении с помощью вентиляционных коробов. Следует устанавливать на балконах.

Преимущество:

  • Автоматическое управление
  • Дополнительно помогает воздуху
  • Занимает мало места
  • Бесшумный корпус
  • Одновременная работа вытяжных вентиляторов
  • Эффективность
  • Предусмотрен пульт

Приточная система позволяет нагревать воздух до необходимой температуры. Особенно в жаркое время чувствуется потребность в принудительном перемещении воздушных масс.


Принудительная вытяжная вентиляция

Принцип работы состоит в том, что прогретый воздух удаляется через вентиляцию. При выборе нужно учитывать мощность и его шумность.

Приточно-вытяжная система вентиляции с рекуператором

Устройство забирает тепло из прогретых воздушных масс. Избавляет от влажности грибка и других проблем. Отличается своей экономичностью и технологичностью. Приточно-вытяжная система обеспечивает полноценную смену воздуха. Показатели воздухообмена варьируются 3-5 м³/час.

Дополнительные преимущества:

  • Технология энергосбережения
  • Минимальный шум
  • Идеальное решение проблем вентиляции

Местная и общеобменная система вентиляции

Местная вентиляция подается на определенные места. Преимущественно используется на производстве. В жилом помещении — это кухонные вытяжки. Общеобменная вентиляция действует на всё помещение.

Наборная система

Состоит из следующих частей:

  • Вентилятора
  • Глушителя
  • Фильтра
  • Системы автоматики и т.д.


Требования и нормативы к вентиляции жилых помещений

Ниже представлены данные, которые должны быть предусмотрены и учтены в жилых помещениях.

Количество содержащегося углекислого газа не должно превышать 0,07-0,1%. На человека необходимо 30-35 м³ воздуха.

В зависимости от возраста ребёнка:

  • показатель до 10 лет 12-20 м³
  • старше 10 лет 20-30 м³

При выборе вентиляционной системы необходимо обратиться к профессионалам, которые учтут все желания и произведут качественную установку.

Важно!
1. Если жилое помещение на этапе строительства, то следует планировать заранее пути размещения системы вентиляции.
2. Если в жилом помещении много комнат, то необходимо предусмотреть дополнительные устройства вытяжки.