Новые бюджетные решения Intel и AMD с тестами по обновленной методике

Подобные статьи, в которых мы тестируем всевозможные платформы на предмет воспроизведения HD-видео различных форматов, постепенно становятся привычным дополнением к тестированию процессоров и графических ускорителей по традиционной методике. В прошлый раз под прицелом оказались настольные процессоры Intel и AMD различных поколений. На этот раз мы решили изучить способности аппаратных декодеров у обновленных бюджетных решений обоих крупнейших производителей и конкурентов.

Обновленная методика тестирования

Но сперва несколько слов об обновленной методике тестирования. Время не стоит на месте, Microsoft всячески подталкивает пользователей уйти с привычной Windows 7 на более новую версию ОС, и как следствие, уже сейчас можно найти немало нового железа, драйвера которого пишутся для Windows 8 (8.1), а для Windows 7 выходят позже или вообще никогда.

Главным образом по этой причине мы обновили ОС на тестовом стенде до Windows 8.1 (редакция Профессиональная x64), включая все обновления по состоянию на сентябрь 2015 года. Поскольку сравнивать напрямую старые результаты, полученные на Windows 7, с новыми в любом случае будет некорректно, мы перешли на DXVA Checker версии 3.8.0. В этой программе есть очень удобный для тестировщика режим Benchmark, в котором видео воспроизводится настолько быстро, насколько это позволяет аппаратный или программный декодер.

Важно отметить, что в прошлых частях сводного тестирования использовалась одна и та же, самая первая версия DXVA Checker. Между тем, начиная с версии 2.0.0 алгоритм для режима Benchmark был сильно изменен (вероятно, он стал более аккуратным и качественным, хотя в режиме оценки «на глаз» никакой разницы заметить не удается), в результате чего показатели всех без исключения декодеров стали значительно более скромными. Чтобы лучше увидеть разницу между старым и новым алгоритмом, мы еще раз протестировали платформу на базе Intel Celeron G540, о возможностях которой было рассказано в третьей части данного тестирования.

Набор кодеков, напротив, остался прежним. В него входят LAV Filters, Media Player Classic Black Edition (MPC-BE) и Windows Media Player 12. Часть кодеков доступна как в виде DirectShow(DS)-фильтров, так и в качестве компонента для фреймворка Media Foundation (ME). Кроме того с переходом на 64-битную платформу появилась возможность выбирать между 32- и 64-битной версиями озвученных выше продуктов. Забегая вперед, отметим, что практической разницы между DS и ME, а также 32- и 64-битной версиями кодеков на сегодняшний день нет, их результаты различаются в пределах погрешности.

Список тестовых роликов в основном остался тем же, однако для каждого из сценариев в пару к столь привычному и отлично поддерживаемому «железом» кодеку H.264 (AVC) был добавлен ролик, закодированный в формате H.265 (HEVC) - более современном и прогрессивном, но все еще довольно сыром и плохо поддерживаемом как устройствами записи, так и устройствами воспроизведения. На текущий момент поддержку аппаратного декодирования HEVC можно считать приятным бонусом и заделом на будущее. Главное, чтобы финальная версия стандарта не была переработана настолько, чтобы выпускаемые сейчас декодеры потеряли свою актуальность.

Сами ролики для тестирования любезно подготовил автор раздела «Цифровое видео» Сергей Мерьков, вы можете скачать их с целью проведения аналогичного тестирования имеющейся в вашем распоряжении программно-аппаратной платформы:


Формат Разрешение Частота кадров Битрейт Ссылка
h264-1080-30p-10mbps.mp4 H.264 1080p 30 10 Мбит/с Скачать
h264-1080-30p-30mbps.mp4 H.264 1080p 30 30 Мбит/с Скачать
h264-1080-30p-100mbps.mp4 H.264 1080p 30 100 Мбит/с Скачать
h264-1080-60p-15mbps.mp4 H.264 1080p 60 15 Мбит/с Скачать
h264-2160-30p-20mbps.mp4 H.264 2160p 30 20 Мбит/с Скачать
h264-2160-30p-100mbps.mp4 H.264 2160p 30 100 Мбит/с Скачать
h265-1080-30p-10mbps.mp4 H.265 1080p 30 10 Мбит/с Скачать
h265-1080-30p-30mbps.mp4 H.265 1080p 30 30 Мбит/с Скачать
h265-1080-30p-100mbps.mp4 H.265 1080p 30 100 Мбит/с Скачать
h265-1080-60p-15mbps.mp4 H.265 1080p 60 15 Мбит/с Скачать
h265-2160-30p-20mbps.mp4 H.265 2160p 30 20 Мбит/с Скачать
h265-2160-30p-100mbps.mp4 H.265 2160p 30 100 Мбит/с Скачать

Тестировать ролики с разрешением ниже 1080p на современных платформах - занятие бессмысленное, поэтому самый «легкий» экземпляр в нашем списке примерно соответствует качеству BDRip 1080. Full HD-ролики, доступные для онлайн-воспроизведения на Youtube и других видеохостингах, имеют, как правило, такой же или более низкий битрейт. Во втором ролике битрейт повышается до 30 Мбит/с, что примерно соответствует качеству BDRemux, то есть Blu-ray без какого-либо ухудшающего качество картинки пережатия. Третий ролик намеренно использует ненормально высокий битрейт, который обычно не встречается в реальной жизни. Это хорошая проверка для выявления «запаса прочности» у тестируемого декодера, однако плохие результаты именно на этом ролике еще не означают, что платформа не подходит в качестве основы для построения HTPC.

Ролики с увеличенным до 60 количеством кадров в секунду сейчас умеют снимать даже не самые дорогие экшн-камеры и смартфоны, поэтому все большее количество спортивных видео, роликов из путешествий, да и просто «влогов» становятся доступны в формате с 50 и 60 FPS. С другой стороны, если кроме воспроизведения полнометражных фильмов и сериалов ничего не требуется, то на качество декодирования подобных роликов можно не обращать особого внимания.

Видео в разрешении 2160p (оно же 4K) также становится в последнее время все популярнее. И хотя доступных и качественных мониторов и телевизоров с соответствующим разрешением пока что крайне мало, да и платформы с видеовыходами HDMI и DisplayPort подходящего стандарта встречаются не повсеместно - все равно воспроизведение таких роликов даже на экране с разрешением Full HD будет давать выигрыш в качестве хотя бы из-за более высокого битрейта. Ролики в этом разрешении также представлены с двумя вариантами битрейта - обычным и сильно завышенным, по аналогии с Full HD, о котором мы говорили выше.

Эти же шесть роликов, с сохранением параметров битрейта и разрешения, были перекодированы в формат H.265 (HEVC). Набор кодеков и методика тестирования с помощью DXVA Checker для них точно такая же, никаких дополнительных действий и настроек не производилось.

Краткий обзор тестируемых платформ

Всего платформ в этой части тестирования представлено 5 штук, при этом полностью новой и неизученной является только одна - процессор Intel Celeron N3150, интегрированный на плату ASRock N3150-ITX. Этот процессор выполнен по техпроцессу 14 нм и входит в новую линейку Braswell. Его графический ускоритель Intel HD Graphics восьмого поколения оснащен аппаратным декодером H.265 и позволяет выводить картинку в разрешении 4K через разъемы HDMI и DisplayPort.

Полный же список участников тестирования выглядит следующим образом:

  • Intel Celeron N3150 ()
  • Intel Pentium J2900 (ASRock Q2900-ITX)
  • AMD Athlon 5350 (графика Radeon HD8400)
  • дискретная видеокарта AMD Radeon R7 240 (Asus R7240-SL-2GD3-L)

Откровенно старый процессор Intel Celeron G540 был повторно протестирован только для того, чтобы продемонстрировать разницу в результатах старой и новой версии DXVA Checker, о чем мы уже упоминали выше. Результаты Intel Pentium J2900 должны быть очень похожи на результат Celeron J1800, равно как и AMD Athlon 5350 по скорости аппаратного декодирования не должен сильно отличаться от AMD A6-5200, поскольку эти пары являются представителями одного семейства - Bay Trail и Kabini соответственно.

В проводимых нами тестированиях платформ явно не хватает дискретных видеокарт AMD и Nvidia. Их основное сравнение будет представлено в следующих частях сводного тестирования, а в качестве пробного шага мы решили посмотреть на результаты графического ускорителя AMD Radeon R7 240 - относительно новой платы начального уровня без поддержки вывода картинки с разрешением Ultra HD.

Воспроизведение HD-видео

В сводную диаграмму включены показатели среднего количества FPS согласно данным DXVAChecker для наиболее производительного декодера. Для удобства восприятия результаты для роликов H.264 и H.265 представлены отдельно.

Результаты получились интересные и немного озадачивающие. С роликами в разрешении Full HD все испытуемые справились вполне успешно. Проблемы возникли только у «старичка» Celeron G540, которому намного комфортнее работалось на 32-битной версии Windows 7 со старыми драйверами и версиями кодеков. Если раньше его аппаратный декодер с огромной скоростью молотил абсолютно любое видео 1080p, то теперь декодер включается, нагрузки на центральный процессор нет, но видео явно тормозит, воспроизводится с пропуском кадров. Использование старых роликов (Ducks Take Off и Porsche Demo) и разных плееров проблему не решает, помогает только отключение аппаратного ускорения и декодирование силами CPU - в таком режиме ролик с разрешением 1080p и скоростью 60 FPS воспроизводится нормально.

С видео в ультравысоком разрешении ситуация заметно хуже. У самого нового Intel Celeron N3150 аппаратный декодер включается, но работает недостаточно быстро - небольшой пропуск кадров периодически случается, это будет раздражать в моменты резкой смены картинки. Пропуски видны и при обычном воспроизведении роликов через Windows Media Player и MPC-BE, так что на ошибку в DXVA Checker это не похоже. Возможно, ситуация станет лучше с выходом новой версии драйверов Intel.

Более старый Intel Pentium J2900 справляется с задачей немного лучше, хотя и у него запаса практически не чувствуется. И это при том, что со старыми ОС и драйверами его ближайший «родственник» Celeron J1800 показывал примерно вдвое лучший результат.

Ранее мы уже убеждались в том, что интегрированный графический чип Radeon HD8000 не оснащается аппаратным декодером 4K-видео и, следовательно, воспроизведение таких роликов полностью ложится на CPU. AMD Athlon 5350 справляется с этой задачей немного лучше, чем AMD A6-5200, но в любом случае его скорости не хватает для стабильных 30 кадров в секунду. Было интересно узнать, на что способна дискретная карта начального уровня AMD. Ведь если для игр она практически непригодна, то, быть может, в нее устанавливают более продвинутый аппаратный декодер для видео. Однако по факту оказалось, что ни по скорости, ни по количеству поддерживаемых форматов Radeon R7 240 не отличается от Radeon HD8000: только Full HD, никакого 4K.

Занятно, что результат программного декодирования потока 2160p для процессора Intel Celeron G540 стал заметно выше, чем был на Windows 7. Теперь его производительности вполне хватает на 4K-ролики со стандартным битрейтом. Нагрузка на процессор при этом не поднимается выше 85%, так что остается еще небольшой запас на фоновые операции, которые могут помешать плавному воспроизведению видео.

Результаты графической карты AMD Radeon R7 240 на данной диаграмме не представлены по той простой причине, что аппаратного ускорителя HEVC в этом чипе нет, а скорость программного декодера зависит исключительно от скорости центрального процессора. Дискретный видеочип в этом случае никак не помогает и не мешает процессу.

Из оставшихся участников тестирования блок аппаратного декодирования потока H.265 обнаружился только у Intel Celeron N3150, и это полностью совпадает с заявленными спецификациями платформ. Занятно, что скорость декодирования H.265 у нового процессора Intel оказывается даже немного выше, чем для более старого и распространенного H.264. Особенно это важно и заметно при воспроизведении видео в разрешении 2160p: если на роликах AVC были заметны пропуски как в режиме бенчмарка, так и в обычных плеерах, то с HEVC ситуация несколько выправляется, ролики 4K с адекватным битрейтом можно смотреть на скорости 30 кадров в секунду. Правда, «запаса прочности» по-прежнему не наблюдается, что несколько настораживает и расстраивает.

Вычислительной мощности всех остальных платформ вполне хватает на воспроизведение Full HD-роликов в новом формате, даже при удвоенной частоте кадров. Но стоит поднять битрейт до аномально высоких значений или повысить разрешение до 2160p, и просмотр видео превращается в слайд-шоу.

Итоги

По итогам очередной части сводного тестирования можно сделать два основных вывода. Во-первых, дискретные видеокарты AMD 2xx начального уровня обладают точно таким же по скорости и поддерживаемым форматам аппаратным декодером для видеопотока, что и встроенные в современные APU графические ускорители этой компании. Возможности этого декодера на сегодняшний день покрывают потребности большей части пользователей, потому как работа с кодеком H.265 и разрешением 4K по-прежнему является скорее экзотикой, чем повседневной необходимостью. Тем не менее, никакого задела на будущее AMD Radeon R7 240 и другие построенные на аналогичном GPU ускорители не обеспечивают, а это делает их чуть менее привлекательными в сравнении с конкурентами.

Во-вторых, аппаратный декодер Intel для процессоров из линейки Braswell можно назвать одним из самых продвинутых на рынке x86-совместимого оборудования. В него заложена поддержка как ультравысокого разрешения 4K, так и нового перспективного кодека H.265 (HEVC). Правда, полноценно воспользоваться им в варианте «из коробки» получится не всегда. Наши тесты показали, что для нахождения оптимального по скорости решения может потребоваться не самый быстрый и увлекательный процесс подбора версии операционной системы, драйверов, кодеков, плеера и их совместной настройки.

В данной статье мы попытаемся понять, отвечает ли видеокодек нового поколения возлагаемым на него надеждам?
Видеокодек нового поколения High Efficiency Video codec (HEVC), известный также как H.265, стал важной вехой видеоиндустрии 2013 года. В течение последних 12 месяцев было много сказано о H.265 и новых технологиях кодирования видео, однако сегодня впервые можно просто сесть и внимательно изучить этот самый кодер нового поколения (хоть и существующий лишь в версии, предшествующей альфа-тестированию), а также протестировать его качества в плане работы с видео. Мы рассмотрим в едином ключе качество отображения видео и размеры сжатия потока нового кодека, сравнив его с предыдущим — H.264, а также изучим производительность в Sandy Bridge-E, Ivy Bridge и Haswell.

Преимущества H.265

Кодек H.264 был вполне успешным проектом. Это весьма гибкий кодек, который получил широкое применение в сетях распространения потокового видео, на спутниковых платформах, а также при записи Blu-ray дисков. Он весьма хорош для масштабирования, благодаря чему он был предложен в качестве стандарта для 3D с частотой кадров 48-60 в секунду, и даже для 4К. И он вполне справляется с этими задачами. Стандарт, принятый для Blu-ray дисков, пока не включает в себя каких-либо рекомендаций относительно данных технологий, однако кодек H.264 сам по себе способен их поддерживать.

Проблема кодека H.264 заключается в том, что будучи в принципе способным кодировать видео в этих форматах, он не может обеспечить степень сжатия, которая бы сделала размеры получаемых файлов приемлемыми. Потребовался новый стандарт, который бы смог существенно уменьшить размеры получаемых после сжатия файлов и тем самым заслужил бы международное признание в качестве средства продвижения новых форматов видео. Так и появился на свет H.265. Он был разработан таким образом, чтобы используя новые технологии сжатия и более умную модель кодирования/декодирования, наиболее экономно использовать пропускные ресурсы канала.

В отличие от H.264, который хоть и может быть использован для поддержки 4К-телевидения, всё же он не создавался для этого формата, а H.265 разрабатывался с учётом всех особенностей 4К, включая поддержку 10-битового видео и высокой частоты кадров. Это только начало, и нынешняя, зародышевая версия кодека имеет некоторые ограничения. Она поддерживает 8-битовый цвет и даёт цветовую модель YUV, однако и данную тестовую версию много кому хотелось бы увидеть в работе. Поэтому группа исследователей, вооружившись только скомпилированным энкодером и несколькими тестовыми клипами, решила проверить – на что же способен новый кодек?

Первое, что их интересовало – это размеры файлов. Исследователи решили сравнить размеры элементарных видеопотоков. При этом следует учесть, что речь шла исключительно о видео – звук не кодировался ни в одном из случаев.

Размеры кодирования определялись настройками квантователя, где более низкие q-показатели соответствовали более высокому качеству (и большему размеру файлов). Базовый кодированный файл состоит из 500 кадров, его размер – 1,5 Гб, YUV 4:2:0, частота кадров – 50 в секунду. Для сравнения использовался элементарный размер потокового файла, потому что он отображает то, что передаётся на декодер для создания изображения на выходе. Исследователи работали с элементарными потоками, потому что на данной стадии проекта (предшествующей альфа-тестированию) размер декодируемого файла всегда составляет 1,5 Гб, вне зависимости от уровня качества, выбранного при его создании.

Это помогает понять основу тех преимуществ, которые может предложить H.265 в сравнении с H.264. И хотя в большинстве случаев он не даёт 50% экономии пропускной способности канала, результат близок к этой цифре. При установке q=24 в квантователе мы получаем файл размером 57% от созданного в H.264, при установке q=30 – 59%, а q=40 даёт 47%. Конечно, при установке q=40 финальный файл далёк от совершенства, однако он позволяет экономить пропускную полосу более, чем вдвое.

Производительность и качество картинки

Следующий вопрос, который интересовал исследователей, – это производительность. Известно, что в сравнении с H.264, H.265 требует большего количества «лошадиных сил» для кодирования и декодирования. Впрочем, разработчики обещают усилить роль параллельных вычислений при кодировании и декодировании, чтобы ускорить эти процессы. Подразумевается, что поддержка OpenCL станет реальной рано или поздно, а это значит, что предложения вроде HAS от AMD могут получить дополнительные очки от поддержки x265 в этом году.

В настоящее время исследователи были ограничены в выборе процессора, однако представитель MultiCoreWare Том Воган уверил их, что команда разработчиков активно работает над многопоточностью. Группа исследователей решила испытать возможности тестового декодера, используя Sandy Bridge-E, Ivy Bridge и Haswell. Исследователи экспериментировали с несколькими различными уровнями параллелизации, однако в итоге решили остановиться на числе физических ядер в системе (6, 4 и 4). Была задействована функция гипер-поточности, но установка параллелизации в 12/8 потока лишь не намного ускорила процесс кодирования.

Параллелизация показала неплохие результаты производительности. Sandy Bridge-E с его шестью ядрами опережает четырёхядерный Ivy Bridge. Ivy Bridge также уступает модели Haswell благодаря поддержке последней AVX2 и лучшим характеристикам производительности. Если сравнивать время кодирования с x264, даже при самых медленных установках, кодирование при помощи x265 идёт намного больше. К примеру, файл, который Ivy Bridge 3770K кодировал в H.264 за 129 секунд, в H.265 кодировался на протяжении 247 секунд. Впрочем, не забывайте о том, что речь идёт о самой-самой первой тестовой версии.

Не менее интересным для исследователей был и вопрос качества. Насколько качество видеофайла, кодированного в H.265, будет отличаться от исходного некомпрессированного видео? Для изучения вопросов, связанных с качеством, исследователи решили выбрать фрагмент баскетбольного матча. Файл, записанный с частотой 50 кадров в секунду, был полон моментов, демонстрирующих быстрые движения, которые очень часто приводят к зависаниям процессоров или «дёрганию» картинки. Согласитесь, если эта «болезнь» будет также свойственна H.265, то его возможность создавать относительно небольшие видео-файлы будет нивелирована плохим качеством.

Elmedia Player для Мак поддерживает h.264 и h.265 кодеки.

Итак, вашему вниманию представлены скриншоты оригинального некомпрессированного YUV видео, а также видео, кодированного в H.265 при показателях q=24, и видео, кодированного в H.264 при показателях q=24.

Как мы видим, разница здесь минимальна. Деревянный пол под прыгающим игроком немного менее размыт в H.264 варианте, однако качество H.265 варианта – феноменально, при том, что размер этого файла примерно вдвое меньше. А как на счёт установок с меньшим качеством? Вот скриншоты видео, кодированного в H.265 и H.264 с показателем q=30. Первым идёт скриншот видео, сжатого в H.265.

При установке квантователя q=30 (размеры файлов соответственно 6.39 Мб и 10.87 Мб) показатели качества потокового видео при использовании кодека H.265 оказались лучшими, чем у потока, кодированного в H.264. Разумеется, группа исследователей, проводившая данные опыты, не собирается возводить полученные результаты в абсолют – как всегда, большое значение имеют параметры кодирования, которые требуют настройки. Однако после более года ожидания, «джинн» по имени H.265, наконец, вышел из бутылки, и уже очевидно, что новый стандарт компрессии сможет оправдать возложенные на него ожидания.

Тем временем поддержка кодирования/декодирования уже очень скоро будет доступна во многих изделиях. Современные процессоры более чем готовы к декодированию H.265 при наличии соответствующего программного обеспечения. Поддержка OpenCL ожидается в ближайших итерациях. А аппаратная поддержка от производителей графических процессоров – таких, как AMD, Intel и Nvidia – дело ближайшего будущего. Возможно, она и не появится в ближайших моделях, которые вот-вот выйдут на рынок, но определённо появится в недалёком будущем. Эти три компании уже включили в свои изделия поддержку дополнительных источников видеоинформации, как отмечается в презентации H.265, поскольку видео становится обычным явлением в любых устройствах.

В долгосрочной перспективе H.265, скорее всего, заменит H.264 в качестве главного решения для расширенной обработки видео. Впрочем, всё будет зависеть ещё и от того, насколько сильнее будет разряжать батареи процесс обработки H.265 видео по сравнению с H.264. Мы сможем об этом узнать только тогда, когда появится полноценное «железо» для работы с этим стандартом, однако пока предположения весьма оптимистичны. Параллельная модель H.265 кодирования, несомненно, должна хорошо показать себя на фоне многоядерных устройств будущего.

UHDTV - это цифровой стандарт телевидения сверхвысокой чёткости (Ultra High Definition Television, UHDTV). Другие названия - Ultra HD и Ultra High Definition Video (UHDV).

Говоря простым языком, UHDTV - это тип разрешения картинки, т.е. количества цветных точек (пикселей), из которых она состоит.
Для сравнения, максимальное разрешение стандартного SD-формата - 400 тыс. пикселей (720×576), HDTV - 2 млн пикселей (1920×1080), а у UHDTV этот показатель может достигать 7680×4320 (33,2 мегапикселя).

UHDTV бывает двух стандартов: 4К Ultra HD с разрешением 3840×2160 и 8K Ultra HD или 4320p c разрешением 7680×4320. Последний формат (8К) распространен очень мало.

Применение UHDTV на практике

Как вы уже, наверное, поняли, формат UHDTV могут поддерживать только телевизоры с подходящей под такое разрешение матрицей. Особенно заметна разница будет для владельцев телевизоров с большим экраном: «кубики» (те самые пиксели) будут настолько малы, что станут абсолютно не видны.

Однако при всех плюсах UHDTV, контента в этом формате - крайне мало. Например, у спутникового ТВ МТС только один канал идет в разрешении 4К, все остальные - в SD или HD-формате. Примерно так же обстоят дела и у других российских провайдеров как кабельного, так и спутникового телевидения. Связано это с тем, что передачи в таком высоком качестве занимают очень много «места» в потоке сигнала, грубо говоря, вместо одного канала в UHDTV можно передавать несколько каналов в SD или HD. Поэтому владельцы UHDTV телевизоров в полной мере насладиться качественным изображением могут, в основном, при просмотре Blu-ray дисков.

Стоит ли волноваться, если ваш телевизор не поддерживает UHDTV? Нет, владельцы телевизоров, поддерживающих HD-формат, смогут смотреть UHDTV-передачи в HD-качестве.

Важно понимать, что хотя сейчас этот формат не так распространен, но за ним - будущее. Ведь когда-то новинкой было и HD разрешение, а теперь практически все модели телевизоров выходят с его поддержкой. Поэтому волноваться, если ваш телевизор не поддерживает UHDTV - не стоит, на данный момент вы много не потеряете.
Но и списывать со счетов новый формат нельзя: после массового внедрения новых кодеков и удешевления технологий производства телевизоров с его поддержкой, UHDTV станет таким же массовым, как и привычный всем HD.

Технология сжатия видео была камнем преткновения в проектировании систем видеонаблюдения со времён появления интернет-протокола (IP) в 1990-е годы. С тех пор стандарты для кодирования видео прошли много этапов исследований. Сегодня внимание отрасли привлёк к себе стандарт сжатия H.265 или HEVC (High Efficiency Video Coding - высокоэффективное кодирование видеоизображений). Это следующая версия после H.264, которая в настоящее время является доминирующей технологией кодирования IP-видео. Мы попытаемся разобраться каковы её перспективы на сегодняшний день и в будущем.

Интеграция технологии H.265 может быть затруднена доступностью оптимизированного H.264, лучшего кодирования для систем видеонаблюдения

H.265: разбираемся что и зачем

Стандарт H.265 стал значительным шагом вперед в области кодирования видео. Одно из его преимуществ в том, что он удваивает эффективность сжатия H.264. Так что при передаче изображений аналогичного качества H.265 использует только половину битрейта предыдущего кодека. Благодаря этому требования к пропускной способности и хранению резко сокращаются, что позволяет более выгодно использовать и аппаратные, и программные средства. Пользователи, по сути, получают больше возможностей с меньшими затратами. Из-за этого большинство производителей аппаратного обеспечения поддерживают внедрение стандарта сжатия H.265 для видеонаблюдения. Так что скоро мы сможем увидеть H.265 в роли следующего стандарта.

Но несмотря на все плюсы, H.265 всё ещё далёк от массового внедрения. Возникает вопрос: могут ли пользователи каким-то образом оптимизировать передачу изображения, прежде чем в сфере видеонаблюдения произойдёт переворот? Ведь популярность видео с большим разрешением растёт, а спрос рождает предложение.

Последние достижения для текущего кодека H.264 оптимизируют битрейт тремя способами: предиктивным кодированием, подавлением шума, и "долгосрочным" управлением битрейтом (predictive encoding, noise suppression, and “long-term” bitrate control). Результатом этого стало сокращение требуемого объёма памяти до 75% для H.264. Из-за этих инноваций и некоторых других факторов высока вероятность того, что в ближайшие 5-10 лет оба стандарта будут мирно сосуществовать на рынке.

Препятствия для принятия H.265

Интеграция технологии H.265, скорее всего, будет тормозиться наличием оптимизированного кодирования H.264, а ещё стоимостью модернизации существующих систем под H.265. Дополнительные сложности возникнут также с изменением производственных процессов для выпуска оборудования, поддерживающего H.265 и с патентами, о которых мы поговорим позже. В принципе, H.264 остается жизнеспособным и работоспособным стандартом для подавляющего большинства систем видеонаблюдения. На сегодняшний день он полностью выполняет свои функции - и, нужно признать, довольно хорошо.

При более высокой стоимости, пользователи должны быть уверены, что обновление до H.265 действительно стоит того

Ограничения лабораторных испытаний

По результатам испытаний проведенных Объединенной командой по видеокодированию Joint Collaborative Team on Video Coding (JCT-VC), коэффициент сжатия H.265 удвоился по сравнению с предыдущим H.264. Но, как и следовало ожидать, эти тесты были проведены в лабораторных условиях и далеки от многих сложностей, возникающих в процессе фактического использования стандарта.

Кодирование в реальном времени с соблюдением баланса между сложностью алгоритма и возможностью сжатия - вот то, что хочется видеть в развитии H.265. На практике возможность сжатия кодека H.265 может не дать 100% улучшения в сравнении с H.264, несмотря на то, что это было заявлено.

Стандарт H.264 более 10 лет внедряли в отрасль, в которой происходило его развитие, при поддержке со стороны всех производителей чипсетов, и с доступом к самым разным кодерам и декодерам. Это проверено и доказано на практике. В этом смысле технологии H.265 придётся многое наверстать.

Цена патента

Ещё одной проблемой, которая может помешать массовому распространению стандарта H.265 - необходимость покупки патента. У многих владельцев предприятий уже есть патент на H.264, в то время как H.265 на ранней стадии своего существования не особо распространён в отрасли, а предприятия, которые владеют им, не связаны между собой. Результатом низкого спроса на новый стандарт становится гораздо более высокая стоимость патента - основной вопрос, который предприятия из отрасли безопасности должны серьезно рассмотреть - как это повлияет на производство и, как следствие, на ценник для конечного потребителя. При введении нового стандарта цена действительно имеет решающее значение, особенно если пользователи должны заменить и внешнюю, и внутреннюю части (фронтенд и бекенд) системы, чтобы пользоваться улучшенной видеокомпрессией. Платя в несколько раз больше, потребитель должен быть уверен в том, что обновление на самом деле стоит того.

Оптимизированные технологии кодирования H.264

Несмотря на приведённые выше аргументы, основной причиной, по которой мы считаем, что H.265 не станет доминирующим решением кодирования в ближайшее время, является простое отсутствие спроса - ряд инновационных производителей внедрил оптимизированные технологии кодирования H.264, а необходимости в Н.265 пока попросту нет. Этот факт можно назвать "решением ещё не возникшей проблемы".

Оптимизированные технологии H.264 используют прогнозирующее кодирование, чтобы уменьшить битрейт, затраченный на неизменное фоновое изображение

С момента запуска технологии H.264 в 2003 году, индустрия безопасности разрабатывает высокопроизводительные видеокодеры, стремясь улучшать качество картинки для систем видеонаблюдения. Добавьте к этому повышающуюся популярность видео высокого качества, растущие требования к битрейту и разрешению, и становится очевидным, что стоимость компонентов системы в целом возросла. Огромное количество видеоданных, получаемых с камер видеонаблюдения, означает, что пользователи должны вкладывать средства в постоянно растущие требования для хранения данных.

Предиктивное кодирование

Как происходит усовершенствование кодека H.264? Во-первых, базовые исследования сжатия видео ведутся в различных отраслях промышленности. Например, в любом видео с камер пользователи сначала обращают внимание на подвижные объекты, а после на статичную часть картинки. Если фон не меняется, он может быть закодирован в качестве опорного кадра. Оптимизированные технологии H.264 используют прогнозирующее кодирование, чтобы уменьшить битрейт потраченный на статичное фоновое изображение. Применяя это прогнозирующее кодирование по всей системе, пользователи значительно экономят на пропускной способности и хранении.

Подавление шума

Ещё одним важным элементом оптимизации H.264 является подавление шума.

Шум или нежелательный электрический сигнал, отображающийся в видеопотоке, является серьёзной помехой цифрового видеосигнала. Это приводит к тому, что на фоне изображения появляется множество посторонних пикселей, вызванных колебаниями света, температуры, или другими сигналами в воздухе. Но оптимизированные технологии H.264 с использованием алгоритмов интеллектуального анализа подавляют большую часть шума путём кодирования объекта переднего плана изображения с более высокой скоростью передачи данных относительно фонового изображения. Результат: чёткие изображения с точной цветопередачей.

Долгосрочный контроль битрейта

И, наконец, требования к битрейту по каждой конкретной сцене могут колебаться в течение дня. Например, в типичной уличной сцене в ночное время есть небольшое движение на первом плане, так что требования к битрейту невысокие. Днём требования значительно повышаются из-за транспортных средств и пешеходов, движущихся на переднем и заднем планах. Современные технологии кодирования H.264 управляют этим распределением по времени путём вычисления общего среднего битрейта, а затем автоматически выделяют необходимый битрейт в то время суток, когда это требуется. Это происходит на уровне заданных значений декодера. Здесь основным преимуществом долгосрочного контроля битрейта является то, что у пользователей есть возможность точно прогнозировать свои требования к системе хранения видео, благодаря чему можно измерять необходимый размер хранилища.

***

На сегодняшний день эти плюсы Н.264 превышают то, что предлагает стандарт Н.265. Помимо прочего, Н.264 имеет ряд других преимуществ: совместимость с существующими системами, меньшую стоимость продукции, более широкий спектр продуктов, на которых кодек может применяться, и меньший патентный риск.

Разработки видеосжатия, как правило, имеют тенденцию придерживаться примерно 10-летнего цикла. В 1994 году был введен формат MPEG2. H.264 запущен в 2003 году, а H.265 - в 2013. В данном случае исторический контекст имеет важное значение, потому что стандарты кодирования видео реагируют не только на технологические изменения, но и на тенденции в рамках всей видео-индустрии. Когда стандартом был формат MPEG2, промышленность была сосредоточена главным образом на DVD-плеерах и телевизионном разрешении, где использовался этот формат. Появление H.264 совпало с введением технологии HD, передовыми IT-технологиями и мобильным интернетом.

Использование H.264 включало HD-цифровое телевидение, интернет-видео, мобильное видео, видеонаблюдение, Blu-Ray и др. Так как H.265 только выходит на сцену, мы считаем, что он будет наиболее широко использоваться в разработке ультра-HD технологий и приложений облачных систем хранения данных.

Перспективы развития технологий сжатия видео

После запуска H.265, члены Объединенной совместной группы по видеокодированию (JCT-VC) начали составлять прогнозы на будущее для данного сегмента. В 2015 году они создали группу совместного исследования видео (Joint Video Exploring Team - JVET), сосредоточив внимание на дальнейшем улучшении возможностей сжатия. Их последние данные тестирования показывают, что улучшения по производительности сжатия H.265 достигнуты на 20%. В то же время, другая организация - AOM (Alliance for Open Media) - объединила целый ряд интернет-ориентированных компаний, в том числе Microsoft, Google, Intel, и Amazon, стремясь прийти к свободному стандарту для интернет-видео. План состоит в том, что этот (свободный) стандарт ускорит обновление технологий в онлайн-мире с сумасшедшей скоростью.

Конкурс на разработку этих стандартов, вероятно, будет жестким - и это также может означать, что 10-летний цикл сжатия канет в Лету, а новые стандарты появятся в гораздо более короткие сроки.