Структурная схема полного усилителя низкой частоты УНЧ изображена на Рис.14.

Рис.14 Структурная схема УНЧ.

Входной каскад выделен с группы каскадов предварительного усиления, так как к нему предъявляются дополнительные требования по согласованию с источником сигнала.

Для уменьшения шунтирования источника сигнала R i низким входным сопротивлением усилителя R ВХ~ должно выполнятся условие: R ВХ~ >> R i

Чаще всего входным каскадом является эмиттерный повторитель, в которого R ВХ~ достигает 50 кОм и более или используются полевые транзисторы, обладающие очень большим входным сопротивлением.

Кроме этого входной каскад должен обладать максимальным отношением сигнал / шум, так как он определяет шумовые свойства всего усилителя.

Регулировки позволяют оперативно устанавливать уровень выходной мощности (громкость, баланс) и изменять форму АЧХ (тембр).

Оконечные каскады обеспечивают требуемую выходную мощность в нагрузке при минимальных нелинейных искажениях сигнала и высокой экономичности. Требования к оконечным каскадам определяются их особенностями.

1. Работа усилителя мощности на низкоомную нагрузку акустических систем требует оптимального согласование оконечного каскада с полным звуковым сопротивлением АС: R ВЫХ~ R Н .

2. Оконечные каскады потребляют основную часть энергии источника питания и экономичность для них является одним из основных параметров.

3. Доля нелинейных искажений, вносимых оконечными каскадами, составляет 70…90%. Это учитывается при выборе их режимов работы.

Предоконечные каскады . При больших выходных мощностях усилителя назначение и требования к предоконечным каскадам аналогичны оконечным каскадам.

Кроме этого, если двухтактные оконечные каскады выполнены на транзисторах одинаковой структуры, то предоконечные каскады должны быть фазоинверсными .

Требования к каскадам предварительного усиления вы­текают из их назначения - усиливать напряжение и ток, создавае­мые источником сигнала на входе, до величины, необходимой для возбуждения каскадов усиления мощности.

Поэтому наиболее важными показателями для многокаскадного предварительного усилителя являются: коэффициент усиления напряжения и тока, частотная характеристика (АЧХ) и час­тотные искажения.

Основные свойства каскадов предварительного усиления:

1. Амплитуда сигнала в предварительных каскадах обычно мала, поэтому в большинстве случаев нелинейные искажения невелики и могут не учитываться.

2. Построение каскадов предварительного усиления по однотактным схемам требует применения в нихнеэкономичного режима А, что практически не сказывается на общей экономичности усилителя из-за малых значений токов покоя транзисторов.

3. Наибольшее распространение в предварительных каскадах получила схема включения транзистора с общим эмиттером, позволяю­щая получить наибольшее усиление иимеющая достаточно большое вход­ное сопротивление, так что каскады можно соединить без согласующих трансформаторов, не теряя в усилении.

4. Из возможных способов стабилизации режима в предварительных каскадах наибольшее распространение получила эмиттерная стабилизация как наиболее эффективная и простая по схеме.

5. Для улучшения шумовых свойств усилителя, транзистор первого каскада выбирают малошумящим с большим значением статического коэффициента усиления по току h 21э >100, а его режим по постоянному току должен быть сла­боточным I ок = 0,2…0,5 мА, а сам транзистор для повышения входного сопротивления УНЧ включают по схеме с общим коллектором (ОК).

Для исследования свойств предварительных каскадов уси­ления составляется эквивалентная электрическая схема их по перемен­ному току. Для этого транзистор заменяется схемой замещения (эк­вивалентным генератором Е ВЫХ , внутренним сопротивлением R ВЫХ ,проходной емкостью С К ),а к нему подключаются все элементы внеш­ней цепи, влияющие на коэффициент усиления и АЧХ (частотные ис­кажения).

Свойства предварительных каскадов усиления определяют­ся схемой их построения: с емкостной или гальванической связями, на биполярных или полевых транзисторах, дифференциальные , каскодные и другие специальные схемы.

При решении многих инженерных задач возникает необходимость в усилении электрических сигналов. Для этой цели служат усилители, т.е. устройства, предназначенные для усиления напряжения, тока и мощности. В усилителях обычно используют биполярные и полевые транзисторы и интегральные микросхемы.

Простейшим усилителем является усилительный каскад.

Состав простейшего усилительного каскада:

    УЭ – нелинейный управляемый элемент (биполярный или полевой транзистор);

    R – резистор;

    E – источник электрической энергии.

Усиление основано на преобразовании электрической энергии источника постоянной э.д.с. E в энергию выходного сигнала за счет изменения сопротивления УЭ по закону, задаваемому входным сигналом.

Основные параметры усилительного каскада:

Для многокаскадных усилителей

В зависимости от диапазона усиливаемых частот входных сигналов усилители подразделяют:

    УПТ (усилители постоянного тока) - для усиления медленно изменяющихся сигналов;

    УНЧ (усилители низкой частоты) - для усиления сигналов в диапазоне звуковых частот (20-20000 Гц);

    УВЧ (усилители высокой частоты) - для усиления сигналов в диапазоне частот от десятков килогерц до десятков и сотен мегагерц;

    Импульсные/широкополосные - для усиления импульсных сигналов, имеющих спектр частот от десятков герц до сотен мегагерц;

    Узкополосные/избирательные - для усиления сигналов в узком диапазоне частот.

По способу включения усилительного элемента разделяют:

В случае применения биполярного транзистора в качестве усилительного элемента:

    С общей базой

    С общим эмиттером

    С общим коллектором

В случае использовании полевого транзистора:

    С общим истоком

    С общим стоком

    С общей базой

Усилительный каскад с общим эмиттером.

Усилительный каскад с ОЭ является одним из наиболее распро­страненных усилительных каскадов, в котором эмиттер является общим электродом для входной и выходной цепей.

Схема усилительного каскада с ОЭ для бипо­лярного транзистора структуры п-р-п.


Для коллекторной цепи усилительного каскада в соответствии со вторым законом Кирхгофа можно записать следующее уравнение электрического состояния:

ВАХ коллекторного резистора Rк является линейной, а ВАХ транзистора нелинейна и представляет собой семейство выходных (коллекторных) характеристик эмиттера, включенных по схеме с ОЭ.

Расчет нелинейной цепи, т.е. определение I к , , и U к для различных токов базы I б и сопротивлений резистора R к , можно провести графически. Для этого на семействе выходных характеристик транзистора необходимо провести прямую из точки E к на оси абсцисс ВАХ резистора Rк, удовлетворяющую уравнению .

Точки пересечения нагрузочной прямой с линиями выходных характеристик дают графическое решение уравнения для данного R б и различных I б .

По этим точкам можно определить ток в коллекторной цепи, напряжения U кэ и .

Сопротивление резистора R к выбирают исходя из требований усиления входного сигнала. При этом необходимо учитывать, чтобы нагрузочная прямая проходила левее и ниже допустимых значений U к max , I к max , P к max и обеспечивала достаточно протяженный линейный участок переходной характеристики.

Эквивалентная схема замещения усилительного каскада с ОЭ и его параметры.

Считая , можно записать эти уравнения в виде

Решая совместно эти уравнения, получим

Знак минус означает, что выходное напряжение находится в противофазе с входным. Получим формулу для коэффициента усиления по напряжению ненагруженного усилительного каскада с общим эмиттером :

Так как . Поэтому

Входное сопротивление усилительного каскада с ОЭ на низких частотах:

Выходное сопротивление усилительного каскада с ОЭ определяется выражением

Температурная стабилизация усилительного каскада с ОЭ

С
ущественным недостатком транзисторов является их зависимость от температуры. С повышением температуры за счет возрастания числа неосновных носителей заряда в полупроводнике увеличивается коллекторный ток транзистора. Это приводит к изменению выходных характеристик транзистора. При увеличении коллекторного тока наΔI k , коллекторное напряжение уменьшается на . Это вызывает смещение рабочей точки транзистора, что может вывести ее за пределы линейного участка характеристик транзистора, и нормальная работа усилителя нарушается.

Для уменьшения влияния температуры на работу усилительного каскада с общим выпрямителем, в его эмиттерную цепь включают резистор R э , шунтированный конденсаторомС э . В цепь базы для создания начального напряжения включают делитель напряжения.

Увеличение тока эмиттера из-за повышения температуры приводит к возрастанию падения напряжения на сопротивлении R э , что вызывает снижение напряжения , а это вызывает уменьшение тока базы. Ток эмиттера и коллектора сохраняют положение рабочей точки на линейном участке характеристики.

Влияние изменения тока коллектора в выходной цепи на входное напряжение транзистора называют отрицательной обратной связью по постоянному току. При отсутствии конденсатора работа усилительного каскада изменяется не только по постоянному току, но и по переменной составляющей.

Усилительный каскад с ОК

К
оллектор транзистора через источник питания соединен непосредственно с общей точкой усилителя, т.к. падение напряжения на внутреннем сопротивлении источника незначительно. Можно считать, что входное напряжение подается на базу транзистора относительно коллектора через конденсаторС 1 , а выходное напряжение равно падению напряжения наR э , которое снимается с эмиттера относительно коллектора. Резистор задает начальный ток смещения цепи базы транзистора, который определяет положение рабочей точки в режиме покоя. При наличииU вх в цепи появляется переменная составляющая , которая создает падение напряжения наR э ( )

Коэффициент усиления по напряжению усилительного каскада с ОК меньше единицы, поэтому его правильнее называть коэффициентом передачи напряжения.

Так как входное значение K u близко к единице, входное сопротивление эмиттерного повторителя много больше входного сопротивленияh 11 транзистора и достигает нескольких сотен килоом.

Выходное сопротивление эмиттерного повторителя имеет значение порядка десятков ом. Таким образом, эмиттерный повторитель обладает очень большим входным и малым выходным сопротивлением, следовательно, его коэффициент усиления по току может быть очень высоким.

Усилительный каскад на полевом транзисторе

У
силительные каскады на полевых транзисторах обладают большим входным сопротивлением.

В этом каскаде резистор R c , с по­мощью которого осуществляется усиление, включен в цепь стока. В цепь истока включен резистор R и , создающий необходимое паде­ние напряжения в режиме покояU 30 , являющееся напряжением сме­щения между затвором и истоком.

Резистор в цепи затвора R 3 обе­спечивает в режиме покоя равенство потенциалов затвора и общей точки усилительного каскада. Следователь­но, потенциал затвора ниже потен­циала истока на величину падения напряжения на резисторе R и от по­стоянной составляющей токаI и0 .Таким образом, потенциал затвора является отрицательным относитель­но потенциала истока.

Входное напряжение подается на резистор R 3 через раздели­тельный конденсатор С. При подаче переменного входного напряже­ния в канале полевого транзистора появляются переменные состав­ляющие тока истокаi и и тока стокаi с, причемi и i с. За счет паде­ния напряжения на резисторе R и от переменной составляющей тока i и , переменная составляющая напряжения между затвором и истоком, усиливаемая полевым транзистором, может быть значи­тельно меньше входного напряжения:

Это явление, называемое отрицательной обратной связью, при­водит к уменьшению коэффициента усиления усилительного кас­када. Для его устранения параллельно резистору R и включают конденсатор С и, сопротивление которого на самой низкой частоте усиливаемого напряжения должно быть во много раз меньше со­противления резистора R н . При этом условии падение напряжения от тока истокаi и на цепочке R и -С и, называемой звеном автомати­ческого смещения, очень небольшое, так что по переменной состав­ляющей тока исток можно считать соединенным с общей точкой усилительного каскада.

Выходное напряжение снимается через конденсатор связи С с между стоком и общей точкой каскада, т. е. оно равно переменной составляющей напряжения между стоком и истоком.

Обратные связи в усилителях

О
братной связью в усилителях называют подачу части (или всего) выход­ного сигнала усилителя на его вход.

Обратные связи в усилителях обычно создают специально. Од­нако иногда они возникают самопроизвольно. Самопроизвольные обратные связи называют пара­зитными.

Если при наличии обратной связи входное напряжение u вх складывается с напряжением об­ратной связи u ос , в результате чего на усилитель подается уве­личенное напряжение u 1, то такую обратную связь называют поло­жительной.

Если после введения обратной связи напряжения u 1 на входе иu вых на выходе усилителя уменьшаются, что вызывается вычита­нием напряжения обратной связи из входного напряженияu вх, то такую обратную связь называют отрицательной.

Все обратные связи делятся на обратные связи по напряжению и по току. В обратной связи по напряжениюu oc =βu вых, где β - коэффициент передачи четырехполюсника обратной связи. В об­ратной связи по токуu ос = R ос i вых, гдеR ос - взаимное сопротив­ление выходной цепи и цепи обратной связи. Кроме того, все об­ратные связи подразделяют на последовательные, при которых цепи обратной связи включают последовательно с входными цепями уси­лителя, и параллельные, когда цепи обратной связи включают параллельно входным цепям усилителя.

Влияние отрицательной обратной связи на коэффициент усиления.

Для усилителя без обратной связи

Вывод: введение отрицательной обратной связи уменьшает коэффициент усиления усилителя в 1+βК раз.

Введение положительной обратной связи по­вышает коэффициент усиления усилителя. Однако положительная обратная связь в электронных усилителях практически не применяется, так как при этом, как будет показано далее, стабильность коэффициента усиления значительно ухуд­шается.

Несмотря на снижение коэффициента усиления, отрицательную обратную связь в усилителях применяют очень часто. В результате введения отрицательной обратной связи существенно улучшаются свойства усилителя:

а) повышается стабильность коэффициента усиления усилителя при изменениях параметров транзисторов;

б) снижается уровень нелинейных искажений;

в) увеличивается входное и уменьшается выходное сопротивле­ния усилителя, и т. д.

Для оценки стабильности коэффициента усиления усилителя с обратной связью следует определить его относительное изменение:

Вывод: всякое изменение коэффициента усиления ослабляется действием отрицательной обратной связи в 1+βК раз.

Если значение βК много больше единицы, что представляет собой глубокую отрицательную обратную связь, то

В случае положительной обратной связи стабильность коэффициента усиления ухудшается:

Введение последовательной обратной связи по напряжению увеличивает входное сопротивление.

Схема усилителя с параллельной обратной связью:

При глубокой отрицательной обратной связи

3) магнитная связь, появляющаяся при близком расположении входных и выходных трансформаторов усилителя.

Усилители постоянного тока

Устройства, предназначенные для усиления сигнала очень низких частот (порядка долей Гц), имеющие амплитудно-частотную характеристику до самых низких частот называются усилителями постоянного тока (УПТ).

Требования к характеристикам УПТ:

    в отсутствие входного сигнала должен отсутствовать выходной сигнал;

    при изменении знака входного сигнала должен изменять знак и выходной сигнал;

    напряжение на нагрузочном устройстве должно быть пропорционально входному напряжению.

Наилучшим образом данным требованиям удовлетворяют УПТ, построенные на дифференциальных балансных каскадах. Они так же обеспечивают эффективную борьбу с так называемым дрейфом нуля УПТ. Построены по принципу четырехплечевого моста.

У
равнение баланса моста:

При изменении Ек баланс не нарушается и в нагрузочном резисторе R н ток равен нулю. С другой стороны, при пропорциональном изменении сопротивлений резисторов R 1 , R 2 или R 3 , R 4, баланс моста тоже не нарушается. Если заменить резисторы R 2 , R 3 транзисторами, то получим дифференциальную схему, очень часто применяемую в УПТ.

В
дифференциальном усилителе сопротивления резисторов R 2 , R 3 в коллекторных цепях транзисторов выбирают равными, режимы обоих транзисторов устанавливают одинаковыми. В таких усилителях подбирают пары транзисторов со строго идентичными характеристиками.

На стабильность электрических режимов существенное влияние оказывает сопротивление резистора R 1 , который стабилизирует ток транзисторов. Чтобы можно было использовать резистор с большим сопротивлением R l , увеличивают напряжение источника питания Ек до значения Е 2 Е 1 , а в интегральных микросхемах часто вместо резистора R 1 применяют стабилизатор постоянного тока, который выполняют на 2-4 транзисторах.

Переменный резистор R п служит для балансировки каскада (для установки нуля). Это необходимо в связи с тем, что не удается подобрать два абсолютно идентичных транзистора и резисторы с равными сопротивлениямиR 2 , R 3 . При изменении положения движка потенциометра R п изменяются сопротивления резисторов, включенных в коллекторные цепи транзисторов, и, следовательно, потенциалы на коллекторах. Перемещением движка потенциометраR п добиваются нулевого тока в нагрузочном резисторе R н в отсутствие входного сигнала.

При изменении э. д. с. источника коллекторного питания Е 1 или смещения Е 2 изменяются токи обоих транзисторов и потенциалы их коллекторов. Если транзисторы идентичны и сопротивления резисторов R 2 , R 3 в точности равны, то тока в резисторе R H за счет изменения э. д. с. E l , Е 2 не будет. Если транзисторы не совсем идентичны, то появится ток в нагрузочном резисторе, однако он будет значительно меньше, чем в обычном, небалансном УПТ.

Аналогично изменения характеристик транзисторов вследствие изменения температуры окружающей среды практически не будут вызывать тока в нагрузочном резисторе.

В то же время при подаче входного напряжения на базу транзистора Т 1 изменятся его коллекторный ток и напряжение на его коллекторе, что вызовет появление напряжения на нагрузочном резисторе R н.

При тщательном подборе транзисторов и резисторов, при стабилизации напряжений источников питания дрейф удается снизить до 1-20 мкВ/°С или при работе в температурном диапазоне от -50 до +50°С составит 0,1-2 мВ, т. е. в сравнении с небалансным УПТ он может быть уменьшен в 20-100 раз.

По таким же схемам можно выполнять усилители на полевых транзисторах. Аналогичные балансные схемы могут быть построены на основе эмиттерных и истоковых повторителей.

Операционные усилители

Операционный усилитель – дифференциальный усилитель постоянного тока с большим коэффициентом усиления, предназначенный для выполнения различных операций над аналоговыми величинами при работе в схемах с отрицательной обратной связью.

ОУ является универсальным блоком с характеристиками, близкими к идеальным, на основе которого можно построить множество различных электронных узлов.

Схема и условное графическое обозначение интегральной микросхемы К140УД8:

Первый каскад на полевых транзисторах VТ 1 VТ 11 иVT 2 ,VT 9 , с каналом р-типа является симметричным дифференциальным каскадом с нагрузочными транзисторамиVТ 3 ,VT 10 . ТранзисторыVТ 4 ,VТ 5 образуют стабилизатор тока в истоковой цепи первого каскада.

Второй каскад - несимметричный дифференциальный каскад на двух эмиттерных повторителях - выполнен на транзисторах VT 7 ,VТ 12 . Связь между первым и вторым каскадами непосредственная.

Н
а составном транзистореVТ 15 , выполнен усилитель напряжения, нагрузкой которого служит полевой транзисторVT 17 . На выходе микросхем применен бестрансформаторный усилитель мощности на составных транзисторахVТ 20 ,VТ 22 иVТ 23 ,VТ 24 .

Микросхема К140УД8 имеет два входа (4- неинвертирующий, 3 - инвертирующий) и один выход (вывод 7), общий вывод 1 и выводы подсоединения питающих напряжений: 8 - для +E 1 и5- для -Е 2 . Выводы 6используют для балансировки микро­схемы с помощью переменного резистора сопротивлением 10 кОм.

УПТ с преобразованием напряжения

Способ снижения дрейфа основан на двойном преобразовании усиливаемого напряже­ния.

Структурная схема:

Модулятор предназначен для преобразования медленно изменяю­щегося входного напряжения в переменное напряжение, амплитуда которого пропорциональна входному напряжению, причем при из­менении знака входного напряжения изменяется фаза переменного напряжения.

Uвх преобразуется с частотой от 50 Гц до 20 МГц.

Существует много различных схем модуляторов. Наиболее рас­пространенными из них являются:

    модулятор с вибропреобразователем;

    модулятор на транзисторах.

М
одулятор с вибропреобразователем пред­ставляет собой маломощный электромагнитный контактор, периодически (с частотой тока, питающего катушку электромагнита) подключающий входное напряжение то к верхней, то к нижней (по схеме) половине первичной обмотки трансформатора. При этом ток в первичной обмотке изменяет направление. Во вторичной обмотке трансфор­матора возникает переменное напряжение. Обычно применяется повышающий трансфор­матор с коэффициентом трансформации до 10, поэтому амплитуда напряжения в не­сколько раз больше входного напряжения.

Достоинство вибропреобразователя - не­большой дрейф, который определяется в основном термо-э. д. с. контактной пары и мо­жет быть снижен до 0,01-0,1 мкВ/ч (0,1- 0,5 мкВ/сут). Входное сопротивление равно 1-10 кОм.

Д – демодулятор – предназначен для преобразования переменного напряжения на входе, медленно изменяющегося постоянного напряжения на выходе.

Преимущества:

Низкий дрейф нуля;

Недостатки:

Плохая АЧХ в области высоких частот.

Модулятор, стоящий на входе усилителя, хорошо преобразует постоянные и медленно изменяющиеся напряжения. При увели­чении частоты входного напряжения работа модулятора ухудша­ется. В то же время на выходе демодулятора применяется сглаживающий фильтр. При частоте сигнала, приближающейся к частоте опорного напряжения u оп, фильтр не может отделить сигнал от опорного напряжения.

Для расширения диапазона частот применяют высокочастотные преобразователи, которые позволяют повысить частоту f оп до 0,5- 10 МГц.

Комбинированные усилители сочетают в себе преимущества усилителей без преобразователя напряжения и с ним.

Структурная схема комбинированного УПТ:

Комбинированный усилитель имеет дрейф на уровне УПТ с преобразованием спектра сигнала, а амплитудно-частотную ха­рактеристику не хуже, чем усилитель без преобразования спектра сигнала. Некоторая неравномерность амплитудно-частотной харак­теристики в области средних частот легко выравнивается за счет отрицательной обратной связи. (КД140УД13).

Операционные усилители являются основой большого класса усилителей со специальными частотными характеристиками. Это достигается применением различных цепей обратной связи.

В операционных усилителях обратная связь отрицательная, если она подается с выхода усилителя на инвертирующий вход. Действительно, при этом напряжение U oc , находящееся в фазе сU вых, будет в противофазе с входным напряжением на инверти­рующем входе. И наоборот, обратная связь является положитель­ной, если она подается на неинвертирующий вход. При последо­вательной обратной связи входной сигналu вх и сигнал обратной связи подаются на разные входы микросхемы, при параллельной - на один.

Выходные каскады на базе " двоек "

В качестве источника сигнала будем использовать генератор переменного тока с перестраиваемым выходным сопротивлением (от 100 Ом до 10,1 кОм) с шагом 2 кОм (рис. 3). Таким образом, при испытаниях ВК при максимальном выходном сопротивлении генератора (10,1 кОм) мы в какой - то степени приблизим режим работы испытуемых ВК к схеме с разомкнутой ООС, а в другом (100 Ом) - к схеме с замкнутой ООС.

Основные типы составных биполярных транзисторов (БТ) показаны на рис. 4. Наиболее часто в ВК используется со ставной транзистор Дарлингтона (рис. 4 а) на базе двух транзисторов одной проводимости (" двойка " Дарлингтона), реже - составной транзистор Шиклаи (рис. 4б) из двух транзисторов разной проводимости с токовой отрицательной ОС, и еще реже - составной транзистор Брайстона (Bryston , рис. 4 в).
" Алмазный " транзистор - разновидность составного транзистора Шиклаи - показан на рис. 4 г. В отличие от транзистора Шиклаи, в этом транзисторе благодаря " токовому зеркалу " ток коллекторов обоих транзисторов VT 2 и VT 3 практически одинаков. Иногда транзистор Шиклаи используют с коэффициентом передачи больше 1 (рис. 4 д). В этом случае K П =1+ R 2/ R 1. Аналогичные схемы можно получить и на полевых транзисторах (ПТ).

1.1. Выходные каскады на базе " двоек ". " Двойка " - это двухтактный выходной каскад с транзисторами, включенными по схеме Дарлингтона, Шиклаи или их комбинации (квазикомлементарный каскад, Bryston и др.). Типовой двухтактный выходной каскад на " двойке " Дарлингтона показан на рис. 5. Если эмиттерные резисторы R3, R4 (рис. 10) входных транзисторов VT 1, VT 2 подключить к противоположным шинам питания, то эти транзисторы будут работать без отсечки тока, т. е. в режиме класса А.

Посмотрим, что даст спаривание выходных транзисторов для двойки " Дарлингт она (рис. 13).

На рис. 15 приведена схема ВК, использованная в одном из професс и ональных усилителей.


Менее популярна в ВК схема Шиклаи (рис. 18) . На первых порах развития схемотехники транзисторных УМЗЧ были популярны квазикомплементарные выходные каскады, когда верхнее плечо выполнялось по схеме Дарлингтона, а нижнее - по схеме Шиклаи. Однако в первоначальной версии входное сопротивление плеч ВК несимметрично, что приводит к дополнительным искажениям. Модифицированный вариант такого ВК с диодом Баксандалла, в качестве которого использован базо - эмиттерный переход транзистора VT 3, показан на рис. 20.

Кроме рассмотренных " двоек ", есть модификация ВК Bryston , в которой входные транзисторы эмиттерным током управляют транзисторами одной проводимости, а коллекторным током - транзисторами другой проводимости (рис. 22). Аналогичный каскад может быть реализован и на полевых транзисторах, например, Lateral MOSFET (рис. 24) .

Гибридный выходной каскад по схеме Шиклаи с полевыми транзисторами в качестве выходных показан на рис. 28 . Рассмотрим схему параллельного усилителя на полевых транзисторах (рис. 30).

В качестве эффективного способа повышения и стабилизации входного сопротивления " двойки " предлагается использовать на ее входе буфер, например, эмиттерный повторитель с генератором тока в цепи эмиттера (рис. 32).


Из рассмотренных " двоек " наихудшим по девиации фазы и полосе пропускания оказался ВК Шиклаи. Посмотрим, что может дать для такого каскада применение буфера. Если вместо одного буфера использовать два на транзисторах разной проводимости, включенных параллельно (рис. 35) , то можно ожидать дальнейшего улучшения пара метров и повышения входного сопротивления. Из всех рассмотренных двухкаскадных схем наилучшим образом по нелинейным искажениям показала себя схема Шиклаи с полевыми транзисторами. Посмотрим, что даст установка параллельного буфера на ее входе (рис. 37).

Параметры исследованных вы ходных каскадов сведены в табл. 1 .


Анализ таблицы позволяет сделать следующие выводы:
- любой ВК из " двоек " на БТ как нагрузка УН плохо подходит для работы в УМЗЧ высокой верности;
- характеристики ВК с ПТ на вы ходе мало зависят от сопротивления источника сигнала;
- буферный каскад на входе любой из " двоек " на БТ повышает входное сопротивление, снижает индуктивную составляющую выхода, расширяет полосу пропускания и делает параметры независимыми от выходного сопротивления источника сигнала;
- ВК Шиклаи с ПТ на выходе и параллельным буфером на входе (рис. 37) имеет самые высокие характеристики (минимальные искажения, максимальную полосу пропускания, нулевую девиацию фазы в звуковом диапазоне).

Выходные каскады на базе " троек "

В высококачественных УМЗЧ чаще используются трехкаскадные структуры: " тройки " Дарлингтона, Шиклаи с выходными транзисторами Дарлинг тона, Шиклаи с выходными транзис торами Bryston и другие комбинации. Одним из самых популярных вы ходных каскадов в настоящее вре мя является ВК на базе составно го транзис тора Дарлингтона из трех транзисторов (рис. 39). На рис. 41 показан ВК с разветвлением каскадов: входные повторители одновременно работают на два каскада, которые, в свою очередь, также работают на два каскада каждый, а третья ступень включена на общий выход. В результате, на выходе такого ВК работают счетверенные транзисторы.


Схема ВК, в которой в качестве выходных транзисторов использованы составные транзисторы Дарлингтона, изображена на рис. 43. Параметры ВК на рис.43 можно существенно улучшить, если включить на его входе хорошо зарекомендовавший себя с " двойками " параллельный буферный каскад (рис. 44).

Вариант ВК Шиклаи по схеме на рис. 4 г с применением составных транзисторов Bryston показан на рис. 46 . На рис. 48 показан вариан т ВК на транзисторах Шиклаи (рис.4 д) с коэффициентом передачи около 5, в котором входные транзисторы работают в классе А (цепи термоста билизации не показаны).

На рис. 51 показан ВК по структуре предыдущей схемы только с единичным коэффициентом передачи. Обзор будет неполным, если не остановиться на схеме выходного каскада с коррекцией нелинейности Хауксфорда (Hawksford), приведенной на рис. 53 . Транзисторы VT 5 и VT 6 - составные транзисторы Дарлингтона.

Заменим выходные транзисторы на полевые транзисторы типа Lateral (рис. 57


По вышению надежности усилите лей за счет исключения сквозных то ков, которые особенно опасны при кли пировании высокочастотных сиг налов, способствуют схемы антинасыщения выходных транзисторов. Варианты таких решений показаны на рис. 58. Через верхние диоды происходит сброс лишнего тока базы в коллектор транзистора при прибли жении к напряжению насы щен ия. На пряжение насыщения мощных транзисторов обычно находится в пределах 0,5...1,5 В, что примерно совпадает с падением напряжения на базо-эмиттерном переходе. В первом варианте (рис. 58 а) за счет дополнительного диода в цепи базы напряжение эмитте р - коллектор не доходит до напряжения насыщения пример но на 0,6 В (падение напряжения на диоде). Вторая схема (рис. 58б) требует подбора резисторов R 1 и R 2. Нижние диоды в схемах предназначены для быстрого выключения транзисторов при импульсных сигналах. Аналогичные решения применяются и в силовых ключах.

Часто для повышения качества в УМЗЧ делают раздельное питание, повышенное, на 10...15 В для входного каскада и усилителя на пряжения и пониженное для вы ходного каскада. В этом случае во избежание выхода из строя выходных транзисторов и снижения перегрузки предвыходных необходимо использовать защитные диоды. Рассмотрим этот вариант на примере модификации схемы на рис. 39. В случае повышения входного напряжения выше на пряжения питания выходных транзисторов открываются дополнительные диоды VD 1, VD 2 (рис. 59), и лишний ток базы транзисторов VT 1, VT 2 сбрасывается на шины питания оконечных транзисторов. При этом не допускается повышения входного на пряжения выше уровней питания для выходной ступени ВК и снижается ток коллектора транзисторов VT 1, VT 2.

Схемы смещения

Ранее, с целью упрощения, вместо схемы смещения в УМЗЧ использовался отдельный источник напряжения. Многие из рассмотренных схем, в частности, выходные каскады с параллельным повторителем на входе, не нуждаются в схемах смещения, что является их дополнительным достоинством. Теперь рассмотрим типовые схе мы смещения, которые представлены на рис. 60 , 61 .

Генераторы стабильного тока. В современных УМЗЧ широко используется ряд типовых схем: диф ференциальный каскад (ДК), отражатель тока (" токовое зеркало "), схема сдвига уровня, каскод (с последова тельным и параллельным питанием, последний также называют " лома ным каскодом "), генератор стабильного тока (ГСТ) и др. Их правильное применение позволяет значительно повысить технические характеристики УМЗЧ. Оценку параметров основных схем ГСТ (рис. 62 - 6 6) сделаем с помощью моделирования. Будем исходить из того, что ГСТ является нагрузкой УН и включенпараллельно ВК. Исследуем его свойства с помощью методики, аналогичной исследованиям ВК.

Отражатели тока

Рассмотренные схемы ГСТ - , это вариант динамической нагрузки для однотактного УН. В УМЗЧ с одним дифференциальным каскадом (ДК) для организации встречной динамической нагрузки в УН используют структуру " токового зеркала " или, как его еще называют, " отражателя тока " (ОТ). Эта структура УМЗЧ была характерна для усилителей Холтона, Хафлера и др. Основные схемы отражателей тока приведены на рис. 67 . Они могут быть как с единичным коэффициентом передачи (точнее, близким к 1), так и с большим или меньшим единицы (масштабные отражатели тока). В усилителе напряжения ток ОТ находится в пределах 3...20 мА: Поэтому испытаем все ОТ при токе, например, около 10 мА по схеме рис. 68.

Результаты испытаний приве дены в табл. 3 .

В качестве примера реального усилителя предлагается схема усилителя мощности S. BOCK , опубликованная в журнале Радиомир, 201 1 , № 1, с. 5 - 7; № 2, с. 5 - 7 Radiotechnika №№ 11, 12/06

Целью автора было построение усилителя мощности, пригодного как для озвучивания " пространства " во время прадничных мероприятий, так и для дискотек. Конечно, хотелось, чтобы он умещался в корпусе сравнительно небольших габаритов и легко транспортировался. Еще одно требование к нему - легкодоступность комплектующих. Стремясь достичь качества Hi - Fi , я выбрал комплементарно - симметричную схему выходного каскада. Максимальная выходная мощность усилителя была задана на уровне 300 Вт (на нагрузке 4 Ом). При таком мощности выходное напряжение составляет примерно 35 В. Следовательно для УМЗЧ необходимо двухполярное питающее напряжение в пределах 2x60 В. Схема усилителя приведена на рис. 1 . УМЗЧ имеет асимметричный вход. Входной каскад образуют два дифференциальных усилителя.

А. ПЕТРОВ, Радиомир, 201 1 , №№ 4 - 12

Усилитель электрических сигналов - это электронное устройство, предназначенное для увеличения мощности, напряжения или тока сигнала, подве­денного к его входу, без существенного искажения его формы. Электрическими сигналами могут быть гармонические колебания ЭДС, тока или мощности, сигналы прямо­угольной, треугольной или иной формы. Частота и форма колебаний являются существенными факторами, опреде­ляющими тип усилителя. Поскольку мощность сигнала на выходе усилителя больше, чем на входе, то по закону со­хранения энергии усилительное устройство должно включать в себя источ­ник питания. Т.о., энергия для работы усилителя и нагрузки подводится от источника питания. Тогда обобщенную структурную схему усилительного устройства можно изобразить, как показано на рис. 1.

Рисунок 1. Обобщенная структурная схема усилителя.

Электрические колебания поступают от источника сигнала на вход усилителя, к выходу ко­торого присоединена нагрузка, энергия для работы усилителя и нагрузки подводится от источника питания. От источника питания усилитель отбирает мощность Ро - необходимую для усиления входного сигнала. Источник сигнала обеспечивает мощность на входе усилителя Р вх выходная мощность Р вых выделяется на активной части нагрузки. В усилителе для мощностей выполняется неравенство: Р вх < Р вых < Ро . Следова­тельно, усилитель - это управляемый входным сигналом преобразователь энергии источника питания в энергию выходного сигнала. Преобразование энергии осуществляется с помощью усилительных элементов (УЭ): биполяр­ных транзисторов, полевых транзисторов, электронных ламп, интегральных микросхем (ИМС). варикапов и других.

Простейший усилитель содержит один усилительный элемент. В большинстве слу­чаев одного элемента недостаточно и в усилителе при­меняют несколько активных элементов, которые соединяют по ступенчатой схеме: колебания, усиленные первым элементом, поступают на вход второго, затем третьего и т. д. Часть усилителя, составляющая одну ступень усиления, называется каскадом . Усилитель состоит из активных и пассивных элемен­тов : к активным элементам относятся транзисторы, эл. микросхемы и другие нелинейные элементы, обладающие свойством изменять электропроводность между выходными электродами под воздействием управляюще­го сигнала на входных электродах. Пассивными эле­ ментами являются резисторы, конденсаторы, катушки индуктивности и другие элементы, формирующие необхо­димый размах колебаний, фазовые сдвиги и другие па­раметры усиления. Таким образом, каждый каскад усилителя состоит из минимально не­обходимого набора активных и пассивных элементов.

Структурная схема типичного многокаскадного усилителя приведена на рис. 2.

Рисунок 2. Схема многокаскадного усилителя.

Входной каскад и предварительный усилитель предназначены для усиления сигнала до значения, необходимого для подачи на вход усилителя мощно­сти (выходного каскада). Количество каскадов предварительного усиления оп­ределяется необходимым усилением. Входной каскад обеспечивает, при необ­ходимости, согласование с источником сигнала, шумовые параметры усилителя и необходимые регулировки.

Выходной каскад (каскад усиления мощности) предназначен для отдачи в нагрузку заданной мощности сигнала при минимальных искажениях его формы и максимальном КПД.

Источни­ками усиливаемых сигналов могут быть микрофоны, счи­тывающие головки магнитных и лазерных накопителей информации, различные преобразователи неэлектрических парамет­ров в электрические.

Нагрузкой являются громкоговорители, электриче­ские двигатели, сигнальные лампы, нагреватели и т. д. Источники питания вырабатывают энергию с заданными параметрами - номинальными значениями напряжений, токов и мощности. Энергия расходуется в коллекторных и базовых цепях транзисторов, в цепях накала и анод­ных цепях ламп; используется для поддержания задан­ных режимов работы элементов усилителя и нагрузки. Нередко энергия источников питания требуется и для работы преобразователей входных сигналов.

Классификация усилительных устройств.

Усилительные устройства классифицируют по различным признакам.

По виду усиливаемых электрических сигналов усилители подразделяют на усилители гармонических (непрерывных) сигналов и усилители импульсных сигналов.

По ширине полосы пропускания и абсолютным значениям усиливаемых частот усилители подразделяются на следующие типы:

- Усилители постоянного тока (УПТ) предназначены для усиления сигналов в пределах от низшей частоты = 0 до верхней рабочей частоты . УПТ усиливает как переменные составляющие сигнала, так и его постоянную со­ставляющую. УПТ широко применяются в устройствах автоматики и вычислительной техники.

- Усилители напряжения , в свою очередь подразделяются на усили­тели низкой, высокой и сверхвысокой частоты.

По ширине полосы пропускания усиливаемых частот различают:

- избирательные усилители (усилители высокой частоты - УВЧ), для которых действительно отношение частот /1 ;

- широкополосные усилители с большим диапазоном частот, для которых отношение частот />>1 (например УНЧ - усилитель низкой частоты).

- Усилители мощности - оконечный каскад УНЧ с трансформаторной развязкой. Для того, чтобы мощность была максимальной R вн. к = R н, т.е. сопротивление нагрузки должно быть равно внутреннему сопротивлению коллекторной цепи ключевого элемента (транзистора).

По конструктивному исполнению усилители можно подразделить на две большие группы: усилители, выполненные с помощью дискретной технологии, то есть способом навесного или печатного монтажа, и усилители, выполненные с помощью интегральной технологии. В настоящее время в качестве активных элементов широко используются аналоговые интегральные микро­схемы (ИМС).

Показатели работы усилителей.

К показателям работы усилителей относятся вход­ные и выходные данные, коэффициент усиления, диапа­зон частот, коэффициент искажений, КПД и другие па­раметры, Характеризующие его качественные и эксплуа­тационные свойства.

К входным данным относятся номинальное значение входного сигнала (напряжения U вх = U 1 , тока I вх = I 1 или мощно­сти P вх = P 1 ), входное сопротивление, входная емкость или ин­дуктивность; ими определяется пригодность усилителя для конкретных практических применений. Входное со­ противление R вх в сравнении с сопротивлением источ­ника сигнала R и предопределяет тип усилителя; в зави­симости от их соотношения различают усилители напря­жения (при R вх >> R и ), усилители тока (при R вх << R и ) или усилители мощности (при R вх = R и ). Входная ем­ кость С вх , являясь реактивной компонентой сопротивле­ния, оказывает существенное влияние на ширину рабо­чего диапазона частот.

Выходные данные - это номинальные значения выход­ного напряжения U вых =U 2 , тока I вых =I 2 , выходной мощности P вых =P 2 и выходного сопротивления. Выходное сопротивление дол­жно быть значительно меньшим, чем сопротивление на­грузки. И входное и выходное сопротивления могут быть активными или иметь реактивную составляющую (ин­дуктивную или емкостную). В общем случае каждое из них равно полному сопротивлению Z, содержащему как активную, так и реактивную составляющие

Коэффициентом усиления называется отношение вы­ходного параметра ко входному. Различают коэффициенты усиления по напряжению K u = U 2 / U 1 , по току K i = I 2 / I 1 и мощности K p = P 2 / P 1 .

Характеристики усилителя.

Характеристики усилителя отображают его способность усиливать с определенной степенью точности сиг­налы различной частоты и формы. К важнейшим харак­теристикам относятся амплитудная, амплитудно-частот­ная, фазо-частотная и переходная .

Рис. 3. Амплитудная характеристика.

Амплитудная характеристика представляет собой зависимость ампли­туды выходного напряжения от амплитуды подаваемого на вход гармонического колебания определенной частоты (рис. 3.). Входной сигнал изменяется от минимального до максимального значения, при­чем уровень минимального значения должен превышать уровень внутренних помех U п , создаваемых самим уси­лителем. В идеальном усилителе (усилителе без помех) амплитуда выходного сигнала пропорциональна ампли­туде входного U вых = K* U вх и амплитудная характерис­тика имеет вид прямой линии, проходящей через начало координат. В реальных усилителях избавиться от помех не удается, поэтому его амплитудная характеристика от­личается от прямой.

Рис. 4. Амплитудно-частотная характеристика.

Амплитудно- и фазо-частотная характеристики отражают зависимость коэффициента усиления от частоты. Из-за присутствия в усилителе реактивных элементов сигналы разных частот усиливаются неодинаково, а вы­ходные сигналы сдвигаются относительно входных на различные углы. Амплитудно-частотная характеристика в виде зависимости представлена на рисунке 4.

Рабочим диапазоном частот усилителя называют интервал частот, в пределах которого модуль коэффициента K остается постоянным или изменяется в заранее заданных пределах.

Фазо-частотной характеристикой называется частотная зависимость угла сдвига фазы выходного сигнала по отношению к фазе входного.

Обратные связи в усилителях.

Обратной связью (ОС) называют связь между электрическими цепями, посред­ством которой энергия сигнала передается из цепи с более высоким уровнем сигнала в цепь с более низким его уровнем: например, из выходной цепи уси­лителя во входную или из последующих каскадов в предыдущие. Структурная схема усилителя с обратной связью изображена на рисунке 5.

Рис. 5. Структурная (слева) и принципиальная схема с отрицательной ОС по току (справа).

Передача сигнала с выхода на вход усилителя осуществляется с помощью четырехполюсника В. Четырехполюсник обратной связи представляет собой внешнюю электрическую цепь, состоящую из пассивных или активных, линей­ных или нелинейных элементов. Если обратная связь охватывает весь усили­тель, то обратная связь называется общей: если обратная связь охватывает от­дельные каскады или части усилителя, называется местной. Таким образом, на рисунке пред­ставлена структурная схема усилителя с общей обратной связью.

Модель усилительного каскада.

Усилител ьный каскад - конструктивное звено усилителя - содержит один или более активных (усилительных) элементов и набор пассивных элементов. На практике, для большей наглядности, сложные процессы исследуют на простых моделях.

Один из вариантов транзисторного каскада для усиления пере­менного тока приведен на рисунке слева. Транзистор V1 р-п-р типа вклю­чен по схеме с общим эмиттером. Входное напряжение база - эмиттерсоздается источником с ЭДС Е c и внутренним сопротивлением R c источника. В цепи базы установлены резисторы R 1 и R 2 . Коллектор тран­зистора соединен с отрицательным зажимом источника E к через резисторы R к и R ф . Выходной сигнал снимается с выводов коллектора и эмиттера и через конденсатор С 2 поступает в нагрузку R н . Конденсатор Сф совместно с резистором образует -звено фильтра (положительную обратную связь - ПОС ), который требуется, в частности, для сглаживания пульсаций питающего напряжения (при маломощном источнике E к с большим внутренним сопротивлением). Так же, для большей стабильности устройства, в цепь эмиттера транзистора V1 (отрицательная обратная связь - ООС ) можно дополнительно включить RC -фильтр, который будет припятствовать передачи части выходного сигнала обратно на вход усилителя. Таким образом, можно избежать эффекта самовозбуждения устройства. Обычно искусственно созданная внешняя ООС позволяет добиться хороших параметров усилителя, однако это справедливо в общем случае только для усиления постоянного тока или низких частот.

Схема усилителя низкой частоты на биполярном транзисторе.

Усилительный каскад на биполярном транзисторе, включенном по схеме с ОЭ, является одним из наиболее распространенных асимметричных усилителей. Принципиальная схема такого каскада, выполненная на дискретных элементах, изображена на рисунке ниже.

В этой схеме резистор , включенный в главную цепь транзистора, служит для ограничения коллекторного тока, а также для обеспечения необходимого коэффициента усиления. При помощи делителя напряжения R1R2 задается начальное напряжение смещения на базе транзистора VT, необходимое для режима усиления класса А.

Цепь RэСэ выполняет функцию эмиттерной термостабилизации точки покоя; конденсаторы С1 и С2 являются разделительными для постоянной и переменной составляющих тока. Конденсатор Сэ шунтирует резистор по переменному току, так как емкость Сэ значительна.

При подаче на вход усилителя напряжения сигнала неизменной амплитуды при различных частотах выходное напряжение в зависимости от частоты сигнала будет изменяться, так как сопротивление конденсаторов C1 , C2 на разных частотах различно.

Зависимость коэффициента усиления от частоты сигнала получило название амплитудно-частотной характеристики усилителя (АЧХ).

Усилители низкой частоты наиболее широко применяются для усиления сигналов, несущих звуковую информацию, в этих случаях они называются, также, усилителями звуковой частоты, кроме этого УНЧ используются для усиления информационного сигнала в различных сферах: измерительной технике и дефектоскопии; автоматике, телемеханике и аналоговой вычислительной технике; в других отраслях электроники. Усилитель звуковых частот обычно состоит из предварительного усилителя и усилителя мощности (УМ). Предварительный усилитель предназначен для повышения мощности и напряжения и доведения их до величин, нужных для работы оконечного усилителя мощности, зачастую включает в себя регуляторы громкости, тембра или эквалайзер, иногда может быть конструктивно выполнен как отдельное устройство.

Усилитель мощности должен отдавать в цепь нагрузки (потребителя) заданную мощность электрических колебаний. Его нагрузкой могут являться излучатели звука: акустические системы (колонки), наушники (головные телефоны); радиотрансляционная сеть или модулятор радиопередатчика. Усилитель низких частот является неотъемлемой частью всей звуковоспроизводящей, звукозаписывающей и радиотранслирующей аппаратуры.

Анализ работы каскада усилителя производят с помощью эквивалентной схемы (на рис. ниже), в которой транзистор заменен Т-образной схемой замещения.

В этой эквивалентной схеме все физические процессы, происходящие в транзисторе, учитываются при помощи малосигнальных Н-параметров транзистора, которые приведены ниже.

Для питания усилителей используются источники напряжения с малым внутренним сопротивлением, поэтому можно считать, что по отношению к входному сигналу резисторы R1 и R2 включены параллельно и их можно заменить одним эквивалентным Rб = R1R2/(R1+R2) .

Важным критерием для выбора номиналов резисторов Rэ, R1 и R2 является обеспечение температурной стабильности статического режима работы транзистора. Значительная зависимость параметров транзистора от температуры приводит к неуправляемому изменению коллекторного тока , вследствие чего могут возникнуть нелинейные искажения усиливаемых сигналов. Для достижения наилучшей температурной стабилизации режима надо увеличивать сопротивление . Однако это приводит к необходимости повышать напряжение питания Е и увеличивает потребляемую от него мощность. При уменьшении сопротивлений резисторов R1 и R2 также возрастает потребляемая мощность, снижающая экономичность схемы и уменьшается входное сопротивление усилительного каскада.

Усилитель постоянного тока в интегральном исполнении.

Усилитель (ОУ) в интегральном исполнении является наиболее распространенной универсальной микросхемой (ИМС). ОУ – это устройство с высокостабильными качественными показателями, которые позволяют производить обработку аналоговых сигналов по алгоритму, задаваемому с помощью внешних цепей.

Операционный усилитель (ОУ) - унифицированный многокаскадный усилитель постоянного тока (УПТ), удовлетворяющий следующим требованиям к электрическим параметрам:

· коэффициент усиления по напряжению стремится к бесконечности;

· входное сопротивление стремится к бесконечности;

· выходное сопротивление стремится к нулю;

· если входное напряжение равно нулю, то выходное напряжение также равно нулю Uвх = 0, Uвых = 0;

· бесконечная полоса усиливаемых частот.

ОУ имеет два входа, инвертирующий и неинвертирующий, а также один выход. Вход и выход УПТ выполняют с учетом вида источника сигнала и внешней нагрузки (несимметричные, симметричные) и величин их сопротивлений. Во многих случаях в УПТ, как и в усилителях переменного тока, обеспечивают большое входное сопротивление, чтобы уменьшить влияние УПТ на источник сигнала, и малое выходное сопротивление, чтобы уменьшить влияние нагрузки на выходной сигнал УПТ.

На рисунке 1 приведена схема инвертирующего усилителя, на рисунке 2 неинвертирующего. В этом случае коэффициент усиления равен:

Для инвертирующего Киоу = Rос / R1

Для неинвертирующего Кноу = 1 + Rос / R1



Инвертирующий усилитель охвачен ООС параллельной по напряжению, что вызывает уменьшение Rвхоу и Rвыхоу. Неинвертирующий усилитель охвачен ООС последовательной по напряжению, что обеспечивает увеличение Rвхоу и уменьшение Rвыхоу. На базе этих ОУ можно построить различные схемы для аналоговой обработки сигналов.

К УПТ предъявляются высокие требования по наименьшему и по высокому входному сопротивлению. Самопроизвольное изменение выходного напряжения УПТ при неизменном напряжении входного сигнала называется дрейфом усилителя . Причинами дрейфа являются нестабильность напряжений питания схемы, температурная и временная нестабильности параметров транзисторов и резисторов. Этим требованиям удовлетворяет ОУ в котором первый каскад собран по дифференциальной схеме, который подавляет все синфазные помехи и обеспечивает высокое входное сопротивление. Этот каскад может быть собран на полевых транзисторах и на составных транзисторах, где в цепи эмиттеров (истоков) подключен ГСТ (генератор стабильного тока), что усиливает подавление синфазных помех. Для повышения входного сопротивления применяют глубокую последовательную ООС и высокую коллекторную нагрузку (в этом случае Jвхоу стремится к нулю).

Усилители постоянного тока предназначены для усиления сигналов, медленно изменяющихся во времени, т. е. сигналов, эквивалентная частота которых приближается к нулю. Поэтому УПТ должны обладать амплитудно-частотной характеристикой в виде, изображённой на рисунке слева. Поскольку коэффициент усиления ОУ очень велик, то использование его в качестве усилителя возможно лишь при охвате его глубокой отрицательной обратной связью (при отсутствии ООС даже крайне малый сигнал "шума" на входе ОУ даст на выходе ОУ напряжение, близкое к напряжению насыщения).

История операционного усилителя связана с тем, что усилители постоянного тока использовались в аналоговой вычислительной технике для реализации различных математических операций, например суммирования, интегрирования и др. В настоящее время эти функции хотя и не утратили своего значения, однако составляют лишь малую часть списка возможных применений ОУ.

Усилители мощности.

Что же представляет из себя усилитель мощности – далее, для краткости будем называть его УМ? Исходя из вышеизложенного, структурную схему усилителя можно условно разделить на три части:

  • Входной каскад
  • Промежуточный каскад
  • Выходной каскад (усилитель мощности)

Все эти три части выполняют одну задачу – увеличить мощность выходного сигнала без изменения его формы до такого уровня, чтобы можно было раскачать нагрузку с низким сопротивлением - динамическую головку или наушники.

Бывают трансформаторные и бестрансформаторные схемы УМ.

1. Трансформаторные усилители мощности.

Рассмотрим однотактный трансформаторный УМ , в кото­ром транзистор включен по схеме с ОЭ (рис. слева).

Трансформаторы ТР1, и ТР2 предназначены для согласования нагрузки и выходного сопротивления усилителя и входного сопротивления усилителя с сопротивлением ис­точника входного сигнала соответственно. Элементы R и D обеспечивают начальный режим работы транзистора, а С увеличивает переменную составляющую, поступающую на транзистор Т.

Поскольку трансформатор является нежелательным элементом усилителей мощности, т.к. имеет большие габариты и вес, относительно сложен в изготовлении, то в настоящее время наибольшее распространение получили бестрансформаторные усилители мощности.

2. Бестрансформаторные усилители мощности.

Рассмотрим двухтактный УМ на биполярных транзисторах с различным типом проводимости. Как уже отмечалось выше, необходимо увеличить мощность выходного сигнала без изменения его формы. Для этого берется постоянный ток питания УМ и преобразуется в переменный, но так, что форма сигнала на выходе повторяет форму входного сигнала, как показано на рисунке ниже:

Если транзисторы обладают достаточно высоким значением крутизны, то возможно построение схем, работающих на нагрузку величиной единицы Ом без использования трансформаторов. Питается такой усилитель от двухполярного источника питания с заземленной средней точкой, хотя возможно построение схем и для однополярного питания.

Принципиальная схема комплементарного эмиттерного повторителя - усилителя с дополнительной симметрией - приведена на рисунке слева. При одинаковом входном сигнале через транзистор n-p-n-типа протекает ток во время положительных полупериодов. Когда же входное напряжение отрицательно, ток будет течь через транзистор p-n-p -типа. Объединяя эмиттеры обоих транзисторов, нагружая их общей нагрузкой и подавая один и тот же сигнал на объединенные базы, получаем двухтактный каскад усиления мощности.

Рассмотрим более подробно включение и работу транзисторов. Транзисторы усилителя работают в режиме класса В. В данной схеме транзисторы должны быть абсолютно одинаковы по своим параметрам, но противоположны по планарной структуре. При поступлении на вход усилителя положительной полуволны напряжения Uвх транзистор Т1 , работает в режиме усиления, а транзис­тор Т2 - в режиме отсечки. При поступлении отрицатель­ной полуволны транзисторы меняются ролями. Так как напряжение между базой и эмиттером открытого транзи­стора мало (около 0,7 В), напряжение Uвых близко к напря­жению Uвх . Однако выходное напряжение оказывается искаженным из-за влияния нелинейностей входных ха­рактеристик транзисторов. Проблема нелинейных искажений решается подачей начального смещения на базовые цепи, переводящей каскад в режим АВ.

Для рассматриваемого усили­теля максимально возможная амплитуда напряжения на нагрузке Um равна E . Поэтому максимально возможная мощность нагрузки определяется выражением

Можно показать, что при максимальной мощности нагрузки усилитель потребляет от источников питания мощность, определяемую выражением

Исходя из вышесказанного, получаем максимально возможный коэффици­ент полезного действия УМ : n max = P н.max / P потр.max = 0,78.

Усилительный режим транзистора определяется постоянными напряжениями между электродами и токами, протекающими в цепях электродов. Их задают элементы внешних цепей транзистора, которые составляют схему его включения. Усилительный прибор, его обвязка, источник питания и нагрузка образуют усилительный каскад .

Рис.20 Схема усилительного каскада на транзисторе с ОЭ

Обозначения в схеме:

R ВХ. V ~ и R ВЫХ. V ~ - входное и выходное сопротивления транзистора V1 переменному току без

учёта элементов внешней цепи (обвязки).

R ВХ.~ и R ВЫХ.~ - входное и выходное сопротивления усилительного каскада.

R U - сопротивление источника сигнала.

R Н~ - эквивалентное сопротивление нагрузки каскада переменному току.

R ВХ.СЛ - входное сопротивление следующего каскада.

U m .ВХ - амплитуда входного сигнала.

U m .ВЫХ - амплитуда выходного сигнала.

Примечание: Все сопротивления цепей измерены в направлении стрелки при разрыве схемы вдоль пунктирных линий.

Независимо от схемы включения транзистора: с общим эмиттером (ОЭ), общей базой (ОБ) или общим коллектором (ОК) назначение элементов усилительного каскада одинаково.

Рассмотрим назначения элементов стандартной обвязки транзистора включённого с общим эмиттером (ОЭ) в типовой схеме усилительного каскада (Рис.20).

Развязывающий фильтр по питанию R ф С ф .

При питании усилителя от выпрямителя фильтр по питанию R ф С Ф обеспечивает сглаживание пульсаций выпрямленного напряжения электрической сети Е К .

Сопротивление резистора R Ф выбирается из расчёта допустимого снижения к.п.д. усилителя и лежит в пределах от долей Ома в оконечных каскадах до единиц кОм в маломощных каскадах, так чтобы ΔU = (0,1…0,2) E K . Тогда ёмкость конденсатора С Ф для звуковых частот может достигать десятки и сотни мкФ, а для её расчёта можно пользоваться приближённой формулой

С Ф > 10 (2π F Н R Ф )

Базовый делитель R Б1 R Б2 .

Два резистора R Б1 и R Б2 , включённых последовательно по постоянному току между шиной питания E K и общим проводом, являются базовым делителем напряжения питания и образуют начальное базовое смещение U 0Б = U Б – U Э между базой и эмиттером транзистора V1. Это напряжение U 0б определяет режим работы транзистора: А, В или АВ.

Чем меньше сопротивления резисторов R Б1 R Б2 тем выше температурная стабильность каскада, но при этом недопустимо снижается входное сопротивление каскада по переменному току R ВХ~ , для которого R Б1 , R Б2 и R ВХ. V ~ (входное сопротивление транзистора) включены параллельно .

R ВХ~ = (R ВХ. V ~ R Б ) (R ВХ. V ~ +R Б ), где R Б = (R Б1 R Б2 ) (R Б1 + R Б2 )

Поэтому типовыми значениями номиналов резисторов базового делителя для каскадов предварительного усиления являются: R Б1 – десятки кОм, R Б2 – единицы - десятки кОм.

Сопротивление коллекторной нагрузки R К.

Резистор R К образует путь протекания коллекторного тока покоя I 0К , который определяется выбранным режимом работы транзистора V1 (А, В или АВ).

В сильной степени сопротивление коллекторной нагрузки R К влияет на усилительные свойства транзистора, так как от его номинала зависит угол наклона выходной динамической характеристики. Чем больше сопротивление резистора R К (десятки кОм) тем больше коэффициент усиления каскада по напряжению К U и, наоборот, чем меньше R К (сотни Ом) – тем больше коэффициент усиления по току К I .

Максимальное усиление мощности будет при соизмеримых значениях R К и R ВЫХ. V ~ (выходного сопротивления транзистора переменному току).

По переменному току сигнала сопротивление коллекторной нагрузки R К включено параллельно R ВЫХ. V ~ и может привести к недопустимому снижению выходного сопротивления каскада R ВЫХ.~ .

Резистор автосмещения R Э.

Эмиттерный ток транзистора I Э (как постоянный I 0Э так и переменный I m Э ), протекая через резистор R Э образует на нём падение напряжения U Э . Это напряжение является напряжением обратной связи U ОС , так как связано с входными параметрами транзистора выражением: U 0Б = U Б – U Э,

где U Б – напряжение на базе V1, измеренное по отношению общего провода.

Как будет доказано в последующих темах, отрицательная обратная связь (ООС) противодействует изменению параметров усилительного каскада, обеспечивая стабилизацию его режима, в том числе и температурного.

Например, повышение температуры tºС вызывает увеличение эмиттерного тока I 0Э и U Э , но при этом автоматически уменьшается начальное базовое смещение U 0Б = U Б – U Э , которое подзапирает транзистор и, как следствие, уменьшает эмиттерный ток, компенсируя его зависимость от температуры. Отсюда название R Э – резистор автосмещения . Таким образом ООС по постоянному току благоприятно сказывается на стабильность режима работы усилительного каскада.

Но за счёт протекания тока сигнала I m Э через R Э образуется ООС по переменному току, которая уменьшает, к сожалению, коэффициент усиления каскада. Включив параллельно резистору R Э конденсатор большой ёмкости С Э , можно уменьшить эквивалентное сопротивление эмиттерной цепи на несколько порядков для самых низких рабочих частот.

Конденсатор С Э предназначен для устранения отрицательной обратной связи по переменному току , в результате чего можно избежать снижения коэффициента усиления.

Разделительные конденсаторы С Р1 С Р2 устраняют связь между каскадами по постоянному току. При их отсутствии режимы работы всех транзисторов гальванически (непосредственно) связанных между собой будут взаимозависимы. Причём, незначительное изменение режима первого транзистора за счёт усилительных свойств приведёт к недопустимому изменению режима последнего.

Емкость межкаскадного разделительного конденсатора в усилителях звуковых частот УЗЧ достигают десятки и сотни микрофарад (мкФ), а выходного разделительного конденсатора, перед громкоговорителем – тысячи мкФ. В высокочастотных цепях ёмкость С Р уменьшается обратно пропорционально рабочей частоте. При использовании полевого транзистора с большим входным сопротивлением, С Р составляет доли мкФ (например 0,1 мкФ).

2. Принцип работы усилительного каскада (Рис.22)

В режиме покоя (при отсутствие сигнала) постоянная составляющая коллекторного тока I 0К протекает от +Е К через R К , переход ЭК VT 1 , R Э , - Е К . Постоянная составляющая коллекторного напряжения, если считать I 0Э ≈ I 0К , равна:

U 0К = Е К - I 0К (R К + R Э)

В усилительном режиме , при подаче сигнала на вход каскада переменная составляющая тока коллекторной цепи I m К протекает по нескольким параллельным цепям:

1. ЭК VT 1 → С Р2 → ЭБ VT 2 → -Е К (общий провод);

2. ЭК VT 1 → R К → С Ф → -Е К;

3. ЭК VT 1 → С р2 → R Б1 → С Ф → -Е К;

4. ЭК VT 1 → С Р2 → R Б2 → -Е К.

Таким образом, полным сопротивлением нагрузки для переменного тока сигнала R н~ является эквивалентное сопротивление параллельно включённых R К, R Б1 , R Б2 , R ВХ. V 2 ,

R Н~ = (R К R ВХ.СЛ. ) (R К +R ВХ.СЛ. ),

где R ВХ.СЛ = (R ВХ. V 2~ R Б1 R Б2 ) (R ВХ. V 2~ R Б1 + R ВХ. V 2~ R Б2 + R Б1 R Б2 )

Рис.22 Схема усилительного каскада с ОЭ.

Полезной является только составляющая выходного тока усиленного сигнала I m Б2 , протекающая по первой из перечисленных ветвей, так как только она будет усиливаться в следующем усилительном каскаде. Остальные постоянные и переменные токи, протекая через элементы обвязки транзистора, приведут к рассеиванию энергии источника питания и сигнала, снижая к.п.д каскада.

Прохождение и обработка сигнала в цепях усилительного каскада наглядно видно по осциллограммам в характерных точках схемы, приведённых на Рис.22.

При подаче на вход каскада сигнала U m .ВХ ранее постоянные напряжения в схеме U 0Б, U 0К, U 0Э станут пульсирующими U m Б, U m К, U m Э , изменяясь синхронно амплитуде входного сигнала. На осциллограммах видно, что напряжения сигналов U m Б, U m К, U m Э , буду смещены по отношению оси времени в положительную или отрицательную область на величину постоянных потенциалов в этих точках U 0Б, U 0К, U 0Э, в зависимости от полярности источника питания “+ Е К ” или “- Е К ” .

Только при единственном включении транзистора по схеме с ОЭ фаза выходного сигнала (осциллограммы U m К и как следствие U m .ВЫХ ), снимаемого с коллектора изменится на 180º. Поэтому каскад с включением транзистора по схеме с ОЭ называется инверсным . При других включениях транзистора с ОК и ОБ выходной и входной сигналы всегда совпадают по фазе .

Для определения схемы включения транзистора с ОЭ, ОК, ОБ необходимо пользоваться следующим правилом (пример для ОЭ):

Если входной сигнал подаётся в базовую цепь транзистора, а выходной снимается с коллектора , то третий электрод – эмиттер , является общим для входного и выходного сигнала независимо от того, как он включён в схему.

На Рис.23 и Рис.24 представлены схемы с включением транзисторов с общим коллектором ОК и общей базой ОБ и приведены их особенности.

Рис.23 Схема усилительного каскада с ОК.

Важными свойствам усилительного каскада с транзистором, включенным с ОК являются:

1. Большое входное R ВХ (десятки кОм ) и малое выходное (десятки Ом ) сопротивления, что улучшает согласование с предыдущими и последующими каскадами.

2. Входной сигнал не инвертируется, т.е. входной U ВХ и выходной U ВЫХ сигналы совпадают по фазе (φ = 0).

3. Коэффициент усиления по напряжению меньше единицы (К U < 1 , но К I >> 1).

Рис.24 Схема усилительного каскада с ОБ.

Свойство транзисторного усилительного каскада с ОБ противоположные свойствам каскада с ОК. Каскады с включением транзистора по схеме с ОБ в низкочастотных усилителях УНЧ (звуковых частот УЗЧ) практически не используются.