Простейшие - древнейшие обитатели Земли. Эволюция животных не остановилась на одноклеточной стадии организации: в результате ароморфозов появились многочисленные многоклеточные формы. Однако простейшие благодаря идиоадаптациям хорошо и разнообразно приспособлены к условиям обитания и, по-видимому, без заметных морфофизиологических изменений существуют миллионы лет, находясь в состоянии биологического прогресса.

В науке нет единой точки зрения о том, какой из классов простейших признать древнейшим. Основательные аргументы имеются в пользу признания древнейшими саркодовых. Они не имеют постоянной формы тела, напоминая этим первые примитивные живые существа, обладают низкой степенью дифференцировки.

В дальнейшем у части амебообразных простейших псевдоподии превратились в жгутики. Первичные жгутиковые еще долго сохраняли амебоподобные черты, о чем свидетельствует тот факт, что даже современные мастигамебы способны образовывать псевдоподии. В процессе эволюции первичные гетеротрофные жгутиковые дали начало ветви аутотрофных жгутиковых, от которых произошли, возможно, растительные организмы.

Однако до сих пор многие зоологи склонны считать первичных жгутиковых (Protophlagellata) предками всех классов простейших (а следовательно, и всего органического мира). Во всяком случае, генетические связи между саркодовыми и жгутиковыми несомненны.

Инфузории имеют сходство со жгутиковыми по ряду признаков (постоянная форма тела, общность в строении жгутиков и ресничек). Первичных жгутиковых следует признать, по-видимому, также предками ресничных. Однако ряд новейших данных заставляет по-новому рассматривать происхождение простейших.

Нет сомнений в том, что эукариоты произошли от прокариотов. Еще в 1924 г. советский ботаник Б. М. Козо-Полянский (1890-1957) высказал мысль о симбиотическом происхождении клеток, в частности их двигательных органоидов. По интересной гипотезе американского биолога Л. Саган-Маргулиса (1967), некогда в позднем докембрии с амебоидным эукариотным существом вступила в симбиоз спирохетоподобная бактерия. Вследствие этого не только увеличилась подвижность симбиотического организма, но и базальная гранула бактерии приняла на себя новую функцию - центриоли, что явилось предпосылкой для митотического деления. Возникновение митоза - новая эра в истории жизни на Земле. Потомки некоторых из эукариотных организмов приобрели хлорофилл (также, возможно, в результате симбиоза с синезелеными водорослями) и дали начало зеленым растениям. У других сохранился гетеротрофный тип питания. От них произошли грибы и животные, в том числе современные простейшие. При этом у одних жгутик сохранился, а у других был утрачен в процессе эволюции. Эта гипотеза делает бесперспективным спор о том, кого признать древнейшими - саркодовых или жгутиковых.

Происхождение многоклеточности связано с крупным ароморфозом в эволюции органического мира, выразившимся в образовании зародышевых слоев. Наиболее вероятно происхождение многоклеточных от колонии жгутиковых типа вольвокс. Однако самая сложная колония простейших всегда остается однослойной, а самые примитивные многоклеточные - двухслойными. Основная трудность заключается в объяснении перехода от однослойной колонии одноклеточных организмов к двухслойному многоклеточному организму. Такими организмами являются губки и кишечнополостные - наиболее примитивные многоклеточные.

Первая попытка разрешения этого вопроса принадлежит Э. Геккелю (1874). В построении своей гипотезы он исходил из эмбриологических исследований, проведенных к тому времени А. О. Ковалевским и другими зоологами преимущественно на ланцетнике и ряде позвоночных. Базируясь на биогенетическом законе, Геккель считал, что каждая стадия онтогенеза повторяет какую-то стадию, пройденную предками данного вида во время филогенетического развития. По его представлениям, стадия зиготы соответствует одноклеточным предкам, стадия бластулы -- шарообразной колонии жгутиковых. Далее по этой гипотезе произошло впячивание (инвагинация) одной из сторон шарообразной колонии (как при гаструляции у ланцетника) и образовался гипотетический двухслойный организм, названный Геккелем гастреей (поскольку он похож на гаструлу и произошел подобно ей), а гипотеза Геккеля получила название теории гастреи. Несмотря на механистичность рассуждений Геккеля, отождествлявшего стадии онтогенеза со стадиями эволюции органического мира без учета их физиологических и экологических особенностей, теория гастреи сыграла важную роль в истории науки, так как способствовала утверждению моно-филитических представлений на происхождение многоклеточных.

В 1886 г. И. И. Мечников подверг ее критике и обосновал свою теорию происхождения многоклеточных. В пользу теории И. И. Мечникова говорят данные сравнительной эмбриологии, сравнительной анатомии и сравнительной физиологии, почему она и получила широкую популярность среди зоологов.

И. И. Мечников изучил зародышевое развитие низших многоклеточных и показал, что у них гаструла никогда не образуется путем инвагинации: в процессе гаструляции часть поверхностных клеток бластулы иммигрирует в полость, в результате чего формируется два слоя - наружный (эктодерма) и внутренний (энтодерма).

По представлениям И. И. Мечникова, у гипотетического предка многоклеточных - шарообразной колонии жгутиковых - клетки, захватывавшие пищевые частицы, временно теряли жгутики и перемещались внутрь колонии. Затем они могли вновь возвращаться на поверхность и восстанавливать жгутик. Постепенно в шарообразной колонии произошло разделение функций между сочленами колонии. Для успешного захвата пищи необходимо активное движение, что привело к поляризации организма. Передние клетки приобретали специализацию в отношении движения (образовывали кинобласт), а задние, где завихрения токов воды создавали условия, более благоприятные для захвата частиц, специализировались в отношении питания (образовали фагоцитобласт). Возникшее затруднение в передаче пищи от задних клеток к передним повлекло за собой иммиграцию фагоцитобластов в полость тела. Для захвата более крупной добычи возникло специальное отверстие (рот). Этот гипотетический организм очень схож с личинкой многих губок и кишечнополостных, в связи с чем И. И. Мечников первоначально назвал его паренхимеллой. В дальнейшем И. И. Мечников счел это название неудачным и, учитывая, что внутренний слой у гипотетического организма формируется из клеток, выполняющих фагоцитарную функцию, назвал его фагоцителлой. Гипотеза И. И. Мечникова получила название теории фагоцителлы.

У представителей этого подцарства тело состоит из множества клеток, выполняющих различные функции. В связи со специализацией клетки многоклеточных обычно теряют способность к самостоятельному существованию. Целостность организма обеспечивается путем межклеточных взаимодействий. Индивидуальное развитие, как правило, начинается с зиготы, характеризуется дроблением зиготы на множество клеток-бластомеров, из которых в дальнейшем формируется организм с дифференцированными клетками и органами.

Филогения многоклеточных

Происхождение многоклеточных от одноклеточных в настоящее время считается доказанным. Главным доказательством этого является почти полная идентичность структурных компонентов клетки многоклеточных животных структурным компонентам клетки простейших. Гипотезы происхождения многоклеточных подразделяются на две группы: а) колониальные, б) полиэргидные гипотезы.

Колониальные гипотезы

Сторонники колониальных гипотез считают, что переходной формой между одноклеточными и многоклеточными животными являются колониальные простейшие. Ниже перечисляются и кратко характеризуются гипотезы этой группы.

    Гипотеза «гастреи» Э. Геккеля (1874). Переходной формой между одноклеточными и многоклеточными животными является однослойная шаровидная колония жгутиковых. Геккель назвал ее «бластеей», так как строение этой колонии напоминает строение бластулы. В процессе эволюции от «бластеи» путем инвагинации (впячивания) стенки колонии происходят первые многоклеточные - «гастреи» (по строению сходны с гаструлой). «Гастрея» - плавающее животное, тело которого состоит из двух слоев клеток, имеет рот. Наружный слой жгутиковых клеток является эктодермой и выполняет двигательную функцию, внутренний слой - энтодермой и выполняет пищеварительную функцию. От «гастреи», по мнению Геккеля, происходят прежде всего кишечнополостные животные, от которых берут свое начало остальные группы многоклеточных. Доказательствами правильности своей гипотезы Э. Геккель считал наличие стадий бластулы и гаструлы на ранних стадиях онтогенеза современных многоклеточных.

    Гипотеза «плакулы» О. Бючли (1884) представляет собой модифицированный вариант гипотезы гастреи Геккеля. В отличие от Э. Геккеля, переходной формой между одноклеточными и многоклеточными животными этот ученый принимает пластинчатую однослойную колонию типа гониума. Первое многоклеточное - геккелевская «гастрея», но в процессе эволюции она образуется путем расслоения колонии и чашевидного прогибания двуслойной пластинки. Доказательствами гипотезы являются не только наличие стадий бластулы и гаструлы на ранних стадиях онтогенеза, но и строение трихоплакса, примитивного морского животного, открытого в 1883 году.

    Гипотеза «фагоцителлы» И.И. Мечникова (1882). Во-первых, И.И. Мечников открыл явление фагоцитоза исчитал этот способ переваривания пищи более примитивным, чем полостное пищеварение. Во-вторых, изучая онтогенез примитивных многоклеточных губок, он обнаружил, что гаструла у губок образуется не путем инвагинации бластулы, а путем иммиграции некоторых клеток наружного слоя в полость зародыша. Именно эти два открытия явились основой для данной гипотезы.

    За переходную форму между одноклеточными и многоклеточными животными И.И. Мечников также принимает «бластею» (однослойная шаровидная колония жгутиковых). От «бластеи» происходят первые многоклеточные - «фагоцителлы». «Фагоцителла» не имеет рта, тело ее состоит из двух слоев клеток, жгутиковые клетки наружного слоя выполняют двигательную функцию, внутреннего - функцию фагоцитоза. «Фагоцителла» образуется из «бластеи» путем иммиграции части клеток наружного слоя внутрь колонии. Прообразом, или живой моделью гипотетического предка многоклеточных - «фагоцителлы» - И.И. Мечников считал личинку губок - паренхимулу.

    Гипотеза «фагоцителлы» А.В. Иванова (1967) представляет собой дополненный вариант гипотезы Мечникова. Эволюция низших многоклеточных, по А.В. Иванову, происходит следующим образом. Переходной формой между одноклеточными и многоклеточными животными является колония воротничковых жгутиковых, не имеющая полости. От колоний воротничковых жгутиковых типа Proterospongia путем иммиграции части клеток наружного слоя внутрь образуются «ранние фагоцителлы». Тело «ранних фагоцителл» состоит из двух слоев клеток, не имеет рта, по строению является средним между строением паренхимулы и трихоплакса, ближе к трихоплаксу. От «ранних фагоцителл» происходят пластинчатые, губки и «поздние фагоцителлы». Наружный слой «ранних» и «поздних фагоцителл» представлен жгутиковыми клетками, внутренний - амебоидными клетками. В отличие от «ранних фагоцителл», «поздние фагоцителлы» имеют рот. От «поздних фагоцителл» происходят кишечнополостные и ресничные черви.

Полиэргидные гипотезы

Сторонники полиэргидных гипотез считают, что переходной формой между одноклеточными и многоклеточными животными являются полиэргидные (многоядерные) простейшие. По мнению И. Хаджи (1963), предками многоклеточных были многоядерные инфузории, первыми многоклеточными - плоские черви типа планарий.

Наиболее аргументированной является гипотеза «фагоцителлы» И.И. Мечникова, доработанная А.В. Ивановым.

Подцарство Многоклеточные подразделяется на три надраздела: 1) Фагоцителлообразные, 2) Паразои, 3) Эуметазои.

Происхождение многоклеточных животных

Проблема происхождения многоклеточных животных представляет интерес не только для зоологии, но имеет большое общебиологическое значение. Многоклеточность представляет ту морфо-анатомическую основу, на которой формируется колоссальное разнообразие планов строения, жизненных форм и эволюционных потенций. Таким образом, знание путей и причин формирования многоклеточности у животных является ключом к пониманию многих важных зоологических и общебиологических вопросов.

В силу своего исключительного значения проблема происхождения многоклеточных животных издавна привлекала внимание исследователей. По этому поводу высказано немало гипотез, большинство их которых в настоящее время представляют исторический интерес, как любопытные примеры становления зоологической мысли. Все эти гипотезы группируются в четыре категории.

Первую группу составляют гипотезы, предполагающие независимое происхождение простейших и многоклеточных животных. К их числу относятся представления С. Авернцева (1910) и А.А. Заварзина (1945). По мнению этих авторов, еще на заре существования жизни на Земле первичное живое вещество (первородная слизь), еще не имевшее клеточной структуры, в одном случае приобрело организацию простейших, в другом – сразу многоклеточное строение. Подобные предположения противоречат как фундаментальному общебиологическому обобщению – клеточной теории, так и сравнительно-цитологическим данным, указывающим на исключительное сходство тонких клеточных структур Protozoa и Metazoa, которые едва ли могли возникнуть независимо.

Вторая группа представлена гипотезами, выводящими многоклеточных непосредственно от одиночных простейших. В частности, такой точки зрения придерживались Г. Иеринг (1877), А.А. Тихомиров (1887), И. Хаджи (1944), О. Штейнбок (1963) и другие авторы. Суть этих гипотез состоит в том, что многоклеточные животные произошли от крупных, высокоразвитых и сложноорганизованных простейших путем так называемой целлюляризации , т.е. единовременного разделения тела простейшего на множество специализированных клеток.

Подобное предположение, несмотря на всю его фантастичность с современных позиций, имеет определенные сравнительно-анатомические и эмбриологические основания. Так, некоторые инфузории по сложности организации, как минимум, не уступают низшим многоклеточным, таким, как бескишечным турбелляриям. Гипотезы целлюляризации исходят из того, что высокоспециализированные структуры инфузорий дали начало специализированным тканям и органам многоклеточных животных.

Эмбриологическим основанием гипотезы целлюляризации служит поверхностное дробление яиц членистоногих. При таком типе дробления деление ядер сперва не сопровождается делением цитоплазмы. Клеточные границы появляются одновременно и сравнительно поздно.

Гипотезы целлюляризации подверглись решительной критике со стороны В.А. Догеля, В.Н. Беклемишева, А.А. Захваткина, А.В. Иванова, О.М. Ивановой-Казас и других крупных зоологов. Суть этой критики, вкратце, состоит в следующем.

Во-первых, ее авторы указали на несостоятельность эмбриологического аргумента. Дело в том, что членистоногие – это животные, далеко отстоящие от истоков многоклеточности, и потому едва ли могли сохранить примитивные формы развития. Дробление яйца членистоногих, вне всякого сомнения – это результат далеко зашедшей специализации. Низшие же многоклеточные имеют совершенно иной ход онтогенеза.

Кроме того, исходя из гипотезы целлюляризации, в онтогенезе многоклеточного животного все ткани должны были бы дифференцироваться сразу после синцитиального дробления, и прямо на месте. В действительности же в ходе индивидуального развития многоклеточных (при гаструляции и органогенезе) наблюдаются последовательная дифференциация и значительные перемещения клеточных масс.

Во-вторых, высокоорганизованные простейшие – это слишком специализированные существа, чтобы дать начало животным с организацией принципиально иного типа. Подобное предположение противоречит одному из фундаментальных законов эволюции, гласящем, что у истоков эволюционно молодой группы организмов всегда находится не самый совершенный представитель из числа эволюционных предшественников.

В-третьих, гипотезы целлюляризации не имеют экологического обоснования. В этой связи, разделение тела простейшего на клетки выглядит беспричинным.

Третья группа гипотез выводит многоклеточных от колониальных простейших.

Среди них исторически первой явилась гипотеза гастреи знаменитого немецкого зоолога Эрнста Геккеля (1874), на длительный период завоевавшая большую популярность среди специалистов. В основу этой гипотезы Э. Геккель положил тот факт, что все многоклеточные животные в своем развитии обязательно проходят двуслойную стадию – гаструлу. Опираясь на биогенетический закон Геккеля-Мюллера (онтогенез есть краткое повторение филогенеза), Геккель предположил, что каждая стадия индивидуального развития многоклеточного животного повторяет (рекапитулирует) соответствующую стадию предковой формы. Так, стадии зиготы в филогенезе соответствует стадия одноклеточного организма, стадии морулы 1 (поздняя стадия дробления в виде плотного зачатка) отвечает морея – колония простейших в виде шаровидного скопления, стадии бластулы – колония простейших в виде полого шара, подобного современному Volvox – бластея . Впячивание (инвагинация) части стенки шаровидной колонии, по Геккелю, привело к образованию двуслойного животного – гастреи , отвечающего стадии инвагинационной гаструлы. Наружный слой клеток гастреи (эктодерма) выполнял функции кожного покрова, внутренний слой (энтодерма) играл роль кишечника. Бластопор выступал в качестве ротового отверстия (рис. 1). Среди современных Мetazoa ближе всего к гастрее Геккеля стоят наиболее примитивные представители кишечнополостных, которых Геккель положил в основу всего филогенетического древа многоклеточных животных.

Рис. 1. Происхождение многоклеточных животных по Геккелю.

Гипотеза гастреи Геккеля имела важное историческое значение, способствуя утверждению эволюционной идеи и крушению «теории типов» Ж. Кювье. Однако она была не свободна и от ряда принципиальных недостатков. К их числу относится, прежде всего, отсутствие сколь бы то ни было внятного экологического и физиологического обоснования процесса инвагинации.

Гипотеза гастреи Геккеля не осталась в одиночестве. Повинуясь зову моды, оригинальные гипотезы колониального происхождения многоклеточных животных предлагали многие ученые. Среди них я упомяну Ланкастера с его «теорией планулы» (1877) и Бючли с «теорией плакулы» (1884). Эти представления имеют в настоящее время лишь узкоспециальный исторический интерес, поэтому на них специально останавливаться не будем.

Весьма обстоятельную критику теории гастреи Геккеля дал И.И. Мечников (1886). Так, он убедительно продемонстрировал, что инвагинация не могла быть исторически первым способом образования двуслойной организации многоклеточных. Дело в том, что примитивным многоклеточным присущ совершенно другой механизм гаструляции, а именно мультиполярная иммиграция . Инвагинация же в филогенетическом аспекте появилась гораздо позднее, как результат прогрессивной эволюции онтогенеза многоклеточных. Кроме того, данные сравнительной физиологии однозначно указывают на вторичный характер полостного пищеварения, которому предшествовало внутриклеточное. Следовательно, по мнению И.И. Мечникова, едва ли первичные многоклеточные, подобно геккелевской гастрее, могли иметь кишечник и ротовое отверстие.

В качестве альтернативы гипотезе Геккеля, И.И. Мечников предложил оригинальную теорию, получившую название теории фагоцителлы (1886). Она достаточно хорошо обоснована и, в несколько модернизированном виде, сохраняет свое значение и в настоящее время.

При разработке теории фагоцителлы И.И. Мечников исходил из следующих соображений.

    Предками многоклеточных животных могли быть одноклеточные с анимальным типом питания, то есть представители подцарства Protozoa.

    Многие жгутиконосцы при определенных условиях (в частности, во время захвата пищи) могут принимать амебоидную форму.

    Внутриклеточное пищеварение в ходе эволюции возникло раньше полостного, следовательно, первичные многоклеточные едва ли имели кишечник, равно как и ротовое отверстие.

    Наиболее примитивными способами гаструляции выступают мультиполярная иммиграция и смешанная деламинация; филогенетические пути становления двуслойной организации должны были быть аналогичными.

Исходной стадией развития многоклеточных животных И.И. Мечников полагал шаровидную колонию жгутиконосцев, все особи которой располагались у ее поверхности одним слоем. Жгутики служили для плавания колонии и содействовали захвату пищевых частиц, организуя водовороты (так называемый седиментационный способ питания). Клетки, захватившие пищевую частицу, отбрасывали жгутик, принимали амебоидную форму и устремлялись внутрь колонии, где предавались перевариванию пищи. Завершив пищеварение и проголодавшись, они восстанавливали жгутик и возвращались на поверхность.

Впоследствии, по мнению И.И. Мечникова, исходно однородные особи колонии разделились на два пласта – кинобласт с локомоторной функцией, и фагоцитобласт с функцией трофической. Этот гипотетический организм напоминал личинок низших многоклеточных, известных под названием паренхимулы. Поэтому И.И. Мечников назвал это существо, по сложившейся зоологической традиции, паренхимеллой . Однако, имея в виду тот факт, что паренхимула является чисто расселительной стадией и самостоятельно не питается, передумал и предложил другое название – фагоцителла (делая тем самым акцент на внутриклеточном пищеварении этого животного).

Теория И.И. Мечникова, оказавшись в тени гипотезы гастреи Геккеля, должного признания не получила, а затем и вовсе была незаслуженно забыта. Лишь спустя полвека она была восстановлена в правах благодаря трудам В.Н. Беклемишева, А.В. Иванова, А.А. Захваткина и А.А. Заварзина. В настоящее время идеи И.И. Мечникова лежат в основе общепризнанных представлений о происхождении многоклеточных животных, о чем будет сказано ниже.

Четвертая группа гипотез предполагает происхождение многоклеточных животных от многоклеточных растений. Сформулировать подобные взгляды отважились Франц (1919, 1924) и Харди (1953).

Так, Франц предположил, что многоклеточные животные происходят от бурых водорослей, а именно от фукусов. Главные сходства, которым Франц придал абсолютное филогенетическое значение, заключаются в похожести жизненных циклов и более или менее одинаковом характере полового размножения.

Концепция Харди (1953) состоит в следующем. По мнению ее автора, переход к многоклеточному состоянию у растений протекает легче, чем у животных, поскольку общий характер питания многоклеточного растения – всасывание пищи всей поверхностью тела – сохраняется прежним. У животного же должен появиться новый способ питания, что чрезвычайно затрудняет переход к многоклеточному состоянию. В противном случае многоклеточность не дает животному никаких преимуществ.

Исходя из этих соображений, Харди предположил, что многоклеточные животные произошли от уже сформировавшихся метафитов, чем и преодолели вышеозначенные затруднения. Испытывая недостаток минерального питания, они начали питаться мелкими организмами, подобно тому, как это делают современные насекомоядные растения. В результате этих рассуждений у Харди появился простой полипообразный метазоон с пузыревидной полостью и щупальцами.

Гипотезы происхождения метазоев от метафитов настолько экзотичны, что останавливаться на их критическом анализе нет смысла.

Современные представления о происхождении многоклеточных животных

Современные представления о происхождении многоклеточных животных основаны на гипотезе фагоцителлы И.И. Мечникова, несколько модернизированной и дополненной с учетом более поздних открытий и идей.

Прежде чем попытаться реконструировать ход этого процесса, следовало бы задуматься: а зачем, собственно говоря, эта самая многоклеточность животным вдруг понадобилась? Существовали они на Земле миллиард лет, совершенствуясь в рамках одноклеточной организации, и вдруг занялись созданием «государства клеток»?

Специалистам хорошо известно, что всякое развитие выходит на качественно новый уровень тогда и только тогда, когда исчерпываются возможности развития в рамках старого качества. Другими словами, когда развитие упирается в некий «потолок», который не может быть преодолен на основе прежней организации. Это означает, что одноклеточное существо обладает некими принципиальными ограничениями, которые мешают ему совершенствоваться.

Анализ зоологического материала позволил установить, что к числу таких ограничений относятся, прежде всего, некоторые аллометрические зависимости. Известно, что эволюция жизни на Земле идет по пути усложнения, одним из проявлений которого является так называемый филогенетический рост – последовательное увеличение размеров организмов по мере их филогенетического развития.

У одноклеточных этот рост связан со многими факторами. Прежде всего, с необходимостью движения простейшего относительно среды. Дело в том, что снабжение простейших кислородом и удаление продуктов их жизнедеятельности происходит путем диффузии. В результате, одноклеточное существо очень быстро создает вокруг себя «пустыню», к тому же загаженную собственными выделениями. Поэтому для него жизненно важно сменить обстановку, т.е. переместиться из испорченного пункта «А» в свежий пункт «Б». Однако мелкий организм имеет колоссальное отношение поверхности к объему и, в силу этого, очень страдает от трения о воду. Другими словами, при активном движении он испытывает исключительно большое сопротивление среды. Причем это сопротивление пропорционально площади простейшего, а его локомоторная мощность – объему. Таким образом, увеличение линейных размеров простейшего, скажем, вдвое приведет к тому, что сопротивление плаванию возрастет в четыре раза, а мощность – в восемь раз. Или, что то же самое, удельная мощность (отношение мощности к силам трения) увеличится в два раза! В результате, возникает тенденция на увеличение размеров тела простейшего как эволюционный ответ на потребность в энергичном плавании.

Другая причина увеличения размеров – создавать в своем теле запас питательных веществ и резервной биомассы, что делает их относительно независимыми от колебаний жизненных ресурсов.

И, наконец, третья (но не последняя!) причина – филогенетический рост есть простое следствие усложнения организации. Когда различных морфологических структур много, им необходим более вместительный «контейнер».

Таким образом, в ходе прогрессивной эволюции простейшие обязаны увеличиваться в размерах. Может ли этот процесс идти бесконечно? И почему мы не вправе ожидать появления, скажем, сложно устроенного одноклеточного величиной со слона?

Дело в том, что функционирование одноклеточного существа, как и любого другого живого организма, основано на целесообразных реакциях на вызовы среды. У одноклеточных такие реакции управляются со стороны ядра. Например, в среде появилось некое вещество. Это вещество вступает в связь с рецепторами, находящимися на внешней поверхности клеточной мембраны, и в результате этого взаимодействия рецептор посылает ядру химический сигнал в виде какой-либо молекулы. Эта молекула достигает ядра и вызывает экспрессию нужного гена. В результате, клетка начинает синтезировать нужное вещество: ответ состоялся.

При увеличении размеров простейшего расстояние между клеточной мембраной и ядром увеличивается. Увеличивается и время реакции организма на внешние сигналы, и он, в конце концов, начинает безнадежно запаздывать, уподобляясь очень флегматичному и неповоротливому великану, беззащитному в быстро меняющейся обстановке.

Надо сказать, что с подобной проблемой живая природа сталкивалась не один раз. Сравнительно недавний пример: появление на Земле крупных динозавров, имеющих длину от носа до кончика хвоста свыше 20 метров. Учитывая, что скорость проведения нервного импульса у рептилий составляет величину того же порядка (30-40 метров в секунду), можно себе представить, как маленький, но дерзкий хищник изволил отобедать хвостом динозавра прежде, чем тот начал осознавать, что у него в тылу что-то происходит. Существует мнение, что именно в силу этих причин головной мозг гигантов был не крупнее теннисного мячика, тогда как основной объем нервной массы помещался в крестцовом отделе. Это «изобретение» уменьшало «плечо» рефлекторной дуги примерно вдвое, во столько же раз сокращая время «осмысления» динозавром тех событий, которые происходят с его хвостом.

Какой же выход из создавшейся ситуации нашли простейшие? Этот выход состоял в полиэнергидности: простейшее развило множество ядер, каждое из которых управляло собственной «провинцией» – прилегающим участком цитоплазмы.

Однако и этот выход оказался лишь полумерой, поскольку целостность получившегося организма была невелика. Простейшее разделилось на множество «автономий», а его координированное управление как единого целого затруднялась все теми же расстояниями между клеточной мембраной и глубоко лежащими частями клетки. В этом отношении простейшее уподобилось огромной и неповоротливой Российской империи середины XIX века, когда приказы из столицы, каковой в те времена был Петербург, передавались в удаленные губернии по конной эстафете. Стоит ли удивляться, что при такой постановке дела губернатор Камчатки узнал Крымской войне лишь спустя три месяца после ее начала, да и то это известие он получил не из Петербурга, а от английской эскадры, приступившей к бомбардировке Петропавловска-Камчатского с морского рейда.

Таким образом, общий план строения простейшего оказался чреват принципиальными ограничениями, которые в рамках одноклеточной организации не могут быть преодолены. Тем не менее, магистральная линия эволюции простейших от примитивных одноядерных диплоидных форм к полиплоидным и, далее, полиэнергидным представителям подцарства совершенно справедливо интерпретируется зоологами как тенденция к многоклеточности .

Коль скоро существуют проблемы, которые не получается разрешить в рамках одноклеточной организации, остается один путь – кооперация одноклеточных индивидов. Именно эти соображения лежат в основе современных представлений о возникновении многоклетчности у животных.

Согласно этим представлениям, предками многоклеточных животных явились довольно примитивные жгутиконосцы, сходные с современными представителями Choanophlagellata – воротничковыми жгутиконосцами. На их филогенетическую близость указывают сходства в ультратонком строении жгутика и кинетосомы, митохондрий, составе запасных питательных веществ, а также наличие воротничковых клеток или клеток с рудиментами воротничка в составе некоторых многоклеточных животных. К тому же, современные Choanophlagellata демонстрируют четко выраженную склонность к образованию различных колоний.

Первой стадией на пути к многоклеточности явилось объединение одиночных воротничковых жгутиконосцев в просто устроенную колонию типа Sphaeroeca – шаровидный агрегат клеток, ориентированных своими жгутиками наружу (рис. 2). Клетки колонии были совершенно одинаковыми в морфологическом и функциональном отношениях. Самое большее, на что могла быть способна такая колония в плане дифференциации клеток, это возникновения морфологического градиента, как это имеет место у современного Volvox – на функционально переднем его полюсе клетки мельче, и постепенно увеличиваются по направлению к функционально заднему полюсу.

Рис. 2. Происхождение многоклеточных животных по Иванову.

Что побудило одноклеточных индивидов к объединению в колонию? По-видимому, необходимость преодоления тех самых аллометрических ограничений, которые мешают простейшим плавать. Поверхность шаровидной колонии и, следовательно, ее трение о воду значительно меньше, чем совокупная поверхность составляющих ее индивидов, а локомоторная мощность колонии равна сумме локомоторных мощностей индивидов. Таким образом, кооперация простейших повышала эффективность плавания.

Сначала такая колония размножалась, по-видимому, только бесполым путем, распадаясь на отдельные клетки, каждая из которых давала начало новой колонии (так, как это происходит у современных Sphaeroeca ). Для того чтобы колония могла развиваться как единое целое, должна была произойти первая дифференцировка клеток на половые и соматические. Точнее, в цикле развития предковой формы должно было появиться новое поколение, представленное половыми особями, подобно тому, как это наблюдается в колониях современных Volvox или Proterospongia. Специализированные половые клетки спасали колонию от постоянного разрушения, так как брали функцию размножения на себя. Колония получила возможность прогрессировать как единое образование, ее интеграция могла усиливаться от поколения к поколению и подчинять себе индивидуальность отдельных особей.

Вторая стадия – факультативная дифференциация колонии на функциональные группы клеток. Причина возникновения этой стадии – продолжающееся увеличение размеров колонии, в силу чего составляющие ее клетки разошлись по периферии, а внутри образовалось свободное пространство, заполненное студенистой массой. Поскольку жгутиковые клетки располагались на поверхности колонии, локомоторная мощность стала пропорциональной площади, и дальнейшее совершенствование локомоции за счет простого увеличения размеров оказалось невозможным – в данном отношении эволюция зашла в тупик. Зато у членов колонии появилась возможность чередовать разные фазы активности, оптимизируя выполнение той или иной функции поочередно. Так, клетки, находящиеся снаружи, выполняли локомоторную функцию в интересах всей колонии, и питались поодиночке, отфильтровывая из воды пищевые частицы, каждый для себя. «Нагрузившись» пищей, клетки утрачивали жгутик, приобретали амебоидную форму и уходили внутрь колонии, где сосредоточивались на переваривании пищи. Опять проголодавшись, клетки возвращались на поверхность, восстанавливали жгутик, и все начиналось сначала.

Третья стадия . Такое физиологическое обособление клеточных слоев явилось важной предпосылкой для постоянной морфологической дифференциации колонии. В конце концов, клеточная масса колонии подразделилась на два пласта, каждый из которых специализировался на выполнении тех или иных функций. Клетки наружного слоя – кинобласт – приняли на себя функцию локомоции и, частично, захвата пищи (с последующей ее передачей клеткам внутреннего слоя). Клетки внутреннего слоя – фагоцитобласт – приняли на себя трофическую функцию – захвата пищи с поверхности колонии и ее переваривания (с последующей передачей легко усваиваемых продуктов переваривания клеткам кинобласта). Таким образом, клеткам не надо было больше сменять друг друга в своем движении с поверхности колонии внутрь и обратно, меняя при этом облик жгутиконосца на форму амебы и форму амебы на облик жгутиконосца.

Таким образом, постоянная дифференциация членов колонии на два клеточных пласта позволила экономить время и жизненные ресурсы членов колонии, оказалась выгодной в эволюционном отношении и закрепилась генетически. Так возникло первое первичное многоклеточное животное (Prometazoa), получившее название ранняя фагоцителла , или фагоцителла -1.

Четвертая стадия – появление первого истинного многоклеточного животного Eumetazoa. Суть ее состояла в эпителизации кинобласта, повлекшей за собой серию важных эволюционных последствий. Сама же эпителизация была вызвана, в первую очередь, необходимостью повышения прочности межклеточных соединений достаточно крупного и активно плавающего существа. Таким образом, клетки кинобласта оказались надежно «сшиты» друг с другом и образовали самую первую ткань – эктодерму .

Это повлекло за собой следующие преобразования.

1. При эпителизации кинобласта часть клеток специализировалась на чувствительной функции и функции проведения раздражения. Так возникли первые чувствительно-нервные элементы, образующие в эктодерме первичный нервный плексус , или нервную систему диффузного типа. Чувствительные элементы сконцентрировались на аборальном полюсе, где образовали теменную пластинку . В конце концов, у фагоцителлы очень рано возник координационный центр, на основе которого развился первичный мозг (возможно, ассоциированный со статоцистом). Благодаря этому интегрированность фагоцителлы как целостного организма резко возросла.

2. Клетки фагоцитобласта больше уже не могли просовывать свои псевдоподии между жгутиковыми клетками, поэтому в эктодерме появилось отверстие – бластопор, или первичный рот, через которое клетки фагоцитобласта могли захватывать пищевые частицы. Ротовое отверстие возникло на функционально заднем полюсе, поскольку при плавании фагоцителлы, в силу гидродинамических причин, именно там концентрировались пищевые частицы. Последнее доказывается лабораторными опытами с личинками некоторых низших многоклеточных животных, рекапитулирующих позднюю фагоцителлу: при добавлении в воду частиц туши все они оказываются в области заднего полюса личинки, где и фагоцитируются клетками пищеварительной паренхимы.

3. С появлением ротового отверстия функционально задний полюс стал и морфологически задним, и получил название орального (или вегетативного). В соответствие с этим, противоположный полюс стал называться аборальным (или анимальным), а соединяющая их ось – первичной главной осью тела , очень важной координатой, с которой при морфоанатомическом анализе соотносится топографическое положение органов и частей всех многоклеточных животных. Таким образом, возникло существо, обладающее радиальной гетерополярной симметрией – первичной формой симметрии настоящих многоклеточных.

Это существо получило название поздней фагоцителлы , или фагоцителлы-2 . Именно оно лежит в основе филогенетического древа всех истинных многоклеточных животных Eumetazoa.

1 Морула в переводе с латинского означает тутовая ягода.

Животные - это эукариотические гетеротрофные организмы. Их описано более 2,0 млн видов.

Царству Животные присущ ряд отличительных признаков:

1. Гетеротрофный тип питания. У большинства голозойное, у некоторых осмотрофное, фаго- и пиноцитоз. Некоторые миксотрофы (эвглена зелёная).
2. Специфические черты в организации животной клетки: не имеет клеточной стенки (поэтому может принимать различную форму), система вакуолей не развита, имеются центриоли, многие клетки снабжены ресничками или жгутиками, основное запасное вещество - гликоген.
3. Четыре типа тканей: эпителиальная, соединительная, мышечная и нервная.
4. В основном подвижный образ жизни , что связано с развитием опорно-двигательной и нервной систем .
5. Имеются экскреторные органы и выделяются азотсодержащие продукты жизнедеятельности (аммиак, мочевина, мочевая кислота и др.).
6. Для высших характерны сложные поведенческие реакции . Высокоорганизованные формы способны осуществлять процессы высшей нервной деятельности.
7. У большинства имеются нервная и гуморальная системы регуляции (у растений только гуморальная).
8. Имеется защитная (иммунная) система.
9. Рост диффузный (то есть рост всей поверхности, а не за счёт определённых ростовых точек) и ограниченный.
10. Жизненные циклы проще, чем у растений . Гаплоидная стадия представлена только гаметами (за исключением споровиков и фораминифер). Редукционное деление осуществляется непосредственно в процессе гаметогенеза.
Систематика. Царство Животные делят на два подцарства: Одноклеточные и Многоклеточные.
Подцарство Одноклеточные включает типы: Саркомастигофора (классы Саркодовые и Жгутиконосцы), Инфузории (класс Ресничные инфузории), Апикомплекса (класс Споровики).
Подцарство Многоклеточные включает типы: Кишечнополостные (классы Гидроидные, Сцифоидные и Коралловые полипы), Плоские черви (классы Сосальщики, Ленточные черви, Ресничные черви), Круглые черви (класс Собственно круглые черви, или Нематоды), Кольчатые черви (классы Малощетинковые, Многощетинковые и Пиявки), Моллюски (классы Брюхоногие, Двустворчатые, Головоногие), Членистоногие (классы Ракообразные, Паукообразные и Насекомые), Хордовые. Тип Хордовые делят на три подтипа: Оболочники (класс Асцидии), Бесчерепные (класс Ланцетники), Позвоночные (классы Хрящевые рыбы, Костные рыбы, Земноводные (Амфибии), Пресмыкающиеся (Рептилии), Птицы, Млекопитающие).

Подцарство простейшие (одноклеточные)

Общая характеристика

Тип Саркомастигофоры

Класс Корненожки (Саркодовые)

Тип Инфузории

Класс Ресничные инфузории

Тип кишенчнополостные

Общая характеристика

Известно около 9 тыс. видов кишечнополостных. Среда обитания - водная (морские водоёмы за исключением нескольких пресноводных видов). Образ жизни - свободноживущие: свободноплавающие или прикреплённые формы.
Систематика. Тип Кишечнополостные включает классы: Гидроидные, Сцифоидные и Коралловые полипы.
Строение. Для большинства кишечнополостных характерны две жизненные формы: прикреплённый полип и свободноплавающая медуза. У многих обе формы чередуются в течение жизненного цикла (полипы - бесполое поколение, медузы - половое).
Полип (прикреплённая форма) имеет вид вытянутого мешка, имеющего отверстие - рот, который окружён щупальцами и ведёт в гастральную (кишечную) полость.

Задний конец тела (подошва) фиксируется к субстрату. Прикреплённые формы могут быть как одиночные (гидра), так и колониальные (коралловые полипы).
Медуза (плавающая форма) имеет форму колокола, зонтика или блюдца, под сводом которого расположен рот, окружённый ротовыми лопастями. По краю купола располагаются щупальца. Плавающие формы всегда одиночные.
Размеры тела от 1 мм до 2 м. Кишечнополостные имеют лучистый (радиальный) тип симметрии , то есть через тело можно провести несколько плоскостей симметрии. Это двухслойные животные - их развитие происходит из двух зародышевых листков. Тело образовано двумя слоями клеток: наружным - эктодерма и внутренним - энтодерма . Между ними находится слой межклеточного студенистого вещества - мезоглея (у медуз и гидроидных полипов) или опорная пластинка, выполняющая функцию внутреннего скелета (у коралловых полипов). Коралловые полипы и колониальные гидроидные, кроме того, имеют наружный известковый или роговой скелет.
Клетки эктодермы и энтодермы дифференцированы по выполняемым функциям.
Клетки эктодермы. Эктодерма включает эпителиально-мускульные, стрекательные, нервные, промежуточные и половые клетки.
Клетки энтодермы. Энтодерма включает эпителиально-мускульные, железистые, нервные и половые клетки.
Эпителиально-мускульные клетки выстилают гастральную полость, имеют 2–5 жгутиков, мышечные волокна (располагаются перпендикулярно продольной оси тела), способны образовывать ложноножки. Обеспечивают движение воды в гастральной полости и внутриклеточное пищеварение.
Железистые клетки вырабатывают и выделяют в кишечную полость пищеварительные ферменты, обеспечивая полостное пищеварение.
Нервные клетки аналогичны нервным клеткам эктодермы.
Половые (у сцифомедуз) аналогичны половым клеткам эктодермы.
Движение осуществляется за счёт сокращения мышечных волокон эпителиально-мускульных клеток наружного и внутреннего слоёв тела. Сокращение продольных мышечных волокон клеток эктодермы приводит к укорочению тела и щупалец, сокращение поперечных волокон клеток энтодермы вытягивает тело в длину. У прикреплённых форм наиболее подвижны щупальца. Одиночные полипы (гидра) передвигаются «кувырканием», медузы - реактивным способом.
Раздражимость возможна благодаря примитивной нервной системе диффузного типа и осуществляется в виде элементарных рефлексов . Например, в ответ на укол иглой все тело гидры сжимается. Прикреплённые формы кишечнополостных не имеют развитых органов чувств, за исключением осязания. У подвижных форм есть органы зрения (глаза) и равновесия (статоцисты - мешочки с камешками из углекислой извести внутри).
Пищеварение. Большинство кишечнополостных активно захватывают пищу щупальцами. Для нападения используют стрекательные клетки, которые парализуют жертву. Пища через рот попадает в пищеварительную (гастральную) полость, где и происходит её переваривание. Различают два вида пищеварения: внутриклеточное и полостное. Внутриклеточное пищеварение осуществляется эпителиально-мускульными клетками энтодермы, захватывающими пищевые частицы путём эндоцитоза. Полостное пищеварение возможно благодаря ферментам, выделяемым в гастральную полость железистыми клетками. Непереваренные остатки из клеток выбрасываются в полость, откуда током воды удаляются через рот.
Дыхание и выделение продуктов обмена осуществляется всей поверхностью тела.
Регенерация - восстановление утраченных или повреждённых частей тела. Возможна благодаря размножению и дифференцировке промежуточных клеток.
Размножение. Большинство раздельнополые. Некоторые гидроидные - гермафродиты - имеют и яичники, и семенники. Характерно чередование бесполого и полового размножения. Бесполое размножение осуществляется путём почкования или стробиляции. Почкование - размножение путём образования на материнском организме почки - выроста, из которого образуется новая особь. Стробиляция - размножение путём множественных поперечных делений полипа на несколько частей. У примитивных гидроидных оплодотворение яйцеклетки происходит на материнском организме. Развитие прямое. У медуз и морских гидроидных половые клетки выделяются в воду, где и происходит оплодотворение. Развитие с метаморфозом, личинка - планула .
Происхождение и ароморфозы. К возникновению типа привели следующие ароморфозы: дифференцировка клеток и образование тканей, нервная система диффузного типа, полостное пищеварение.
Значение. Кишечнополостные являются важным звеном в цепях питания морских животных, способствуют очищению воды (биологические фильтраторы). Некоторые виды медуз ядовитые (цианея, крестовичок), некоторых используют в пищу. Коралловые полипы формируют уникальные экологические системы коралловых рифов. В то же время коралловые рифы и острова (атоллы) затрудняют судоходство. Из скелетов коралловых полипов формируются месторождения известняка, используемого в строительстве.

Класс Гидроидные

Жизненные формы - полипная (пресноводная гидра) или полипная и кратковременная медузная (обелия).
Пресноводная гидра. Среда обитания - пресные водоёмы. Свободноживущая, прикреплённая. Длина тела около 1 см. Тело состоит из мешкообразного туловища, подошвы и щупалец. Прикрепляется к субстрату подошвой. Тело двухслойно. Рот окружён щупальцами (5–12), которые служат для захвата пищи. Клетки эктодермы: эпителиально-мускульные, нервные, стрекательные, промежуточные, половые. Клетки энтодермы: эпителиально-мускульные, железистые и нервные. С помощью эпителиально-мускульных клеток организм способен совершать движение. Стрекательные клетки служат для защиты и нападения. Дыхание осуществляется всей поверхностью тела. Нервная система диффузного типа, состоит из разбросанных по всему телу нервных клеток. Развито осязание. Гастральная полость не имеет перегородок и каналов. Бесполое размножение (почкование) происходит летом. Половое размножение происходит осенью. В эктодерме формируются половые железы, где образуются гаметы (сперматозоиды со жгутиками и амебоидная яйцеклетка), оплодотворение происходит на теле материнской гидры. Медузоидная форма отсутствует. Развитие прямое.
Гидроидные полипы (обелия). Характерно чередование бесполого и полового поколений (метагенез). Бесполое поколение (полипы) образует колонии в виде дерева или кустика. Половое поколение - гидроидные медузы - образуются путём почкования как части колонии, в дальнейшем отделяются от неё и ведут свободный образ жизни. Размножение у гидроидных медуз половое. Осеменение наружное (половые клетки выделяются в воду). Развитие с метаморфозом (личинка - планула).

Класс Сцифоидные

Сцифоидные медуз ы (корнерот, цианея, гонионема). Обитают только в морях. Стадия медузы преобладает над стадией полипа. Медуза напоминает перевёрнутый и сильно сплющенный полип. Содержимое медузы представлено сильно развитой мезоглеей (содержит до 98% воды). По краю зонтика имеется скопление нервных клеток в виде ганглиев. Органы чувств: равновесия - статоцисты, зрения - глаза. Кишечная полость представлена системой сообщающихся каналов (4 радиальных и 1 кольцевой). Передвижение медуз в воде осуществляется по реактивному принципу за счёт выталкивания воды из-под купола при сокращении стенок зонтика. Раздельнополы. Характерно чередование поколений. Размножение полипа происходит стробиляцией - упорядоченным поперечным делением полипа на несколько частей. Половые клетки образуются в энтодерме. Из оплодотворённой яйцеклетки развивается личинка. После прикрепления к субстрату из неё развивается полип. Подрастая, полип начинает отпочковывать молодых медуз.

Класс Коралловые полипы

Коралловые полипы (актиния, роговой коралл, красный коралл). Существуют только в виде полипа. Обитают на мелководьях тропических морей. Встречаются одиночные (редко) и колониальные формы. Рот окружён либо восемью щупальцами (восьмилучевые кораллы), либо числом щупальцев, кратным шести (шестилучевые кораллы). Имеют наружный известковый или роговой скелет, образующийся из эктодермы, или внутренний скелет, образующийся в мезоглее. В цикле развития отсутствует медузоидная форма и чередование поколений. Размножение бесполое (почкование) и половое. Раздельнополые, половые клетки образуются в энтодерме. Развитие прямое или с метаморфозом (личинка - планула). Известковые скелеты колониальных форм образуют рифы и океанические острова.

Тип плоские черви

Общая характеристика

Класс Ресничные черви

Белая (молочная) планария. Питается водными беспозвоночными. Достигает в длину 25 мм. Тело уплощено, покрыто ресничками, задний конец заострён. На переднем конце имеет небольшие глазки и органы химического чувства. Внутреннее строение такое же, как и у всех представителей плоских червей.

Класс Сосальщики

Класс Ленточные черви

Бычий цепень. Размер 4–10 м. Форма тела - лентовидная. Отделы тела - головка, шейка, членики (до 1 тыс. и более). Головка имеет четыре присоски, шейка нерасчленённая, тело длинное лентовидное расчленённое. Пищеварительная система отсутствует. Дыхательная система отсутствует. Анаэроб. Нервная система развита слабо. Цепни - гермафродиты. В каждом членике имеются один яичник и множество семенников. Из кишечника человека (основной хозяин) выделяются членики, содержащие яйца. Вместе с травой они попадают в желудок коровы (промежуточный хозяин). Из яиц выходят шестикрючные личинки, которые проникают в кровеносные сосуды кишечника и затем в мышцы. Здесь личинки превращаются в финны (пузырёк с головкой цепня внутри). При употреблении непроваренного финнозного мяса человеком головка цепня прикрепляется к стенке и начинает продуцировать членики.
Эхинококк. Взрослая форма длиной до 6 мм. Состоит из 3–4 члеников, на головке имеет присоски и хоботок с венчиком крючьев. Членики не отделяются. Основной хозяин - собаки, волки, лисицы. У них цепень обитает в тонком кишечнике. Промежуточный - овцы, свиньи, козы, крупный рогатый скот, олени, человек. В промежуточном хозяине развивается стадия финны - пузырь с множеством головок. Пузыри развиваются в лёгких, печени, головном мозге, костях и имеют размеры с детскую голову. Заражение человека происходит при проглатывании яиц цепня, попавших на руки после контакта с собаками и дикими животными.

Тип круглые черви

Общая характеристика

Класс Нематоды (Собственно круглые черви)

Тип кольчатые черви

Общая характеристика

Строение. Двусторонняя симметрия тела. Размеры тела от 0,5 мм до 3 м. Тело подразделяется на головную лопасть, туловище и анальную лопасть. У многощетинковых обособлена голова с глазами, щупальцами и усиками. Тело сегментировано (внешняя и внутренняя сегментация). Туловище содержит от 5 до 800 одинаковых сегментов, имеющих форму колец.

Сегменты имеют одинаковое внешнее и внутреннее строение (метамерия) и выполняют сходные функции. Метамерное строение тела определяет высокую способность к регенерации.
Стенка тела образована кожно-мускульным мешком , состоящим из однослойного эпителия, покрытого тонкой кутикулой, двух слоёв гладких мышц: наружного кольцевого и внутреннего продольного, и однослойного эпителия вторичной полости тела. При сокращении кольцевых мышц тело червя становится длинным и тонким, при сокращении продольных мышц оно укорачивается и утолщается.
Органы движения - параподии (имеются у многощетинковых). Это выросты кожно-мускульного мешка на каждом сегменте с пучками щетинок. У малощетинковых сохраняются только пучки щетинок.
Полость тела вторичная - целом (имеет эпителиальную выстилку, покрывающую кожно-мускульный мешок изнутри и органы пищеварительной системы снаружи). У большинства представителей полость тела разделена поперечными перегородками, соответственно сегментам тела. Полостная жидкость является гидроскелетом и внутренней средой, она участвует в транспорте продуктов обмена, питательных веществ и половых продуктов.
Пищеварительная система состоит из трёх отделов: переднего (рот, мускулистая глотка, пищевод, зоб), среднего (трубчатый желудок и средняя кишка) и заднего (задняя кишка и анальное отверстие). Железы пищевода и средней кишки выделяют ферменты для переваривания пищи. Всасывание питательных веществ происходит в средней кишке.
Кровеносная система замкнутая. Имеется два главных сосуда: спинной и брюшной , соединённые в каждом сегменте кольцевидными сосудами. По спинному сосуду кровь движется от заднего конца тела к переднему, по брюшному - спереди назад. Движение крови осуществляется благодаря ритмичным сокращениям стенок спинного сосуда и кольцевых сосудов («сердца») в области глотки, имеющих толстые мышечные стенки. Кровь у многих красная.
Дыхание. У большинства кольчатых червей дыхание кожное. У многощетинковых имеются органы дыхания - перистые или листовидные жабры . Это видоизменённые спинные усики параподий или головной лопасти.
Выделительная система метанефридиального типа. Метанефридии имеют вид трубочек с воронками. По две в каждом сегменте. Воронка, окруженная ресничками, и извитые трубочки находятся в одном сегменте, а короткий каналец, открывающийся наружу отверстием - выделительной порой, в соседнем сегменте.
Нервная система представлена надглоточным и подглоточным узлами (ганглиями ), окологлоточным нервным кольцом (соединяет надглоточный и подглоточный ганглии) и брюшной нервной цепочкой , состоящей из парных нервных узлов в каждом сегменте, соединённых продольными и поперечными нервными стволами.
Органы чувств. У многощетинковых есть органы равновесия и зрения (2 или 4 глаза). Но у большинства имеются только отдельные обонятельные, осязательные, вкусовые и светочувствительные клетки.
Размножение и развитие. Почвенные и пресноводные формы в основном гермафродиты. Половые железы развиваются только в определённых сегментах. Осеменение внутреннее. Тип развития - прямой. Кроме полового размножения характерно и бесполое (почкование и фрагментация). Фрагментация осуществляется благодаря регенерации - восстановлению утраченных тканей и частей тела. Морские представители типа раздельнополые. Половые железы у них развиваются во всех или в определённых сегментах тела. Развитие с метаморфозом, личинка - трохофора .
Происхождение и ароморфозы. К возникновению типа привели следующие ароморфозы: органы движения, органы дыхания, замкнутая кровеносная система, вторичная полость тела, сегментация тела.
Значение. Дождевые черви улучшают структуру и повышают плодородие почвы. Океанический червь палоло употребляется в пищу человеком. Медицинские пиявки используются для кровопускания.

Класс Малощетинковые (Олигохеты)

Представители: дождевые черви, трубочники и др. Большинство малощетинковых обитает в почве и пресных водах. Детритофаги - питаются полуразложившимися остатками растений и животных. Параподии отсутствуют. Щетинки отходят непосредственно от стенки тела. Головная лопасть выражена слабо. Органы чувств часто отсутствуют, но имеются обонятельные, осязательные, вкусовые, светочувствительные клетки. Гермафродиты. Осеменение внутреннее, перекрёстное. Развитие прямое, проходит в коконе, который после оплодотворения образуется на теле червя в виде пояска, а затем сползает с него.
Огромна роль дождевых червей в почвообразовании. Они способствуют накоплению гумуса и улучшают структуру почвы, тем самым повышая плодородие почвы.

Класс Многощетинковые (Полихеты)

Класс Пиявки

Тип моллюски

Общая характеристика

Описано свыше 130 тыс. видов. По числу видов моллюски занимают второе место после членистоногих. Среда обитания: морские и пресные водоёмы, влажные места суши. Большинство моллюсков являются свободноживущими. Первичноротые. Развиваются из трёх зародышевых листков. Ведут малоподвижный образ жизни.

Систематика. Тип Моллюски включает классы: Брюхоногие, Двустворчатые, Головоногие.
Строение. Моллюски (мягкотелые) имеют мягкое несегментированное тело. Большинство двустороннесимметричные, а брюхоногие - асимметричные. Размеры тела от 2–3 мм до 18 м.
Отделы тела. Тело разделено на голову, ногу, туловище

У двустворчатых голова отсутствует. Нога - это мускулистый вырост брюшной стенки тела, который служит для передвижения. Туловище содержит внутренние органы, на голове расположены рот и органы чувств.
Тело моллюска, как правило, покрыто раковиной . Она может быть цельной, двустворчатой, пластинчатой. У некоторых раковина редуцирована (слизни, головоногие). Раковина выполняет защитную функцию и роль наружного скелета. Обычно она состоит из трёх слоёв: наружного - органического (рогового), среднего - известкового, внутреннего - перламутрового (фарфорового). Раковина образуется из веществ, выделяемых мантией. Мантия - складка кожи, полностью или частично покрывающая тело моллюска.
Между мантией и телом моллюска находится мантийная полость . В ней располагаются органы дыхания и химического чувства и открываются пищеварительная, выделительная и половая системы. С внешней средой мантийная полость сообщается сифонами (у водных форм) или дыхательными отверстиями (у наземных).
Полость тела вторичная, редуцированная во взрослом состоянии. Её остатки - околосердечная сумка и полости половых желёз. Промежутки между органами заполнены соединительной тканью - паренхимой .
Пищеварительная система имеет три отдела: передний (ротовая полость, глотка, пищевод), средний (желудок, средняя кишка) и задний (задняя кишка, анальное отверстие). Имеются печень, слюнные железы (у многих). В ротовой полости расположены роговые челюсти. В глотке находится язык (тёрка , или радула ), покрытый зубчиками. Задняя кишка открывается в мантийную полость. Моллюски питаются растительной и животной пищей. Они активно её заглатывают или пассивно фильтруют воду.
Кровеносная система незамкнутая. Сердце расположено в около-сердечной сумке и имеет 1 желудочек и 1–2 или 4 предсердия. Кровь поступает в сосуды, а затем в промежутки между органами - лакуны . Она омывает органы, затем собирается в сосуды, идущие к органам дыхания, а оттуда - к сердцу. Кровь чаще бесцветная, иногда содержит вещество, близкое по структуре к гемоглобину.
Дыхательная система. У водных форм - кожные жабры (складки мантии), у наземных форм - лёгкое (карман мантии) с дыхательным отверстием.
Органы выделения - почки (видоизменённые метанефридии). Они открываются одним концом в околосердечную сумку, другим - в мантийную полость.
Нервная система диффузно-узлового типа . Она состоит из нервных узлов, находящихся в разных частях тела и соединённых между собой нервными стволами.
Органы чувств представлены органами зрения (глазами), осязания, равновесия и химического чувства.
Размножение и развитие. Встречаются и раздельнополые, и гермафродиты. Размножение половое. Половые железы (семенники и яичники) парные. Осеменение наружное или внутреннее. Развитие прямое (у головоногих и некоторых брюхоногих) или с метаморфозом (у двустворчатых и некоторых брюхоногих). Личинка - парусник (у брюхоногих) или глохидий (у двустворчатых).
Передвигаются моллюски при помощи ноги (волнообразные сокращения мышц) или реактивно (выталкивание воды при резком закрытии раковины или через воронку из мантийной полости).
Происхождение и ароморфозы. Моллюски произошли от кольчатых червей. К возникновению типа привели следующие ароморфозы: разделение тела на отделы; появление сердца, почки, печени.

Класс Брюхоногие

Представители: виноградные улитки, прудовики, катушки, слизни, рапаны и др. Среда обитания водная и наземно-воздушная. Обитают в пресных водоёмах, морях, сырых местах суши.
Характерной чертой является асимметричность строения, обусловленная редукцией органов правой и преимущественным развитием органов левой стороны. Раковина цельная спирально закрученная или редуцированная (у слизней). Мантия покрывает тело частично, образуя так называемое лёгкое с дыхательным отверстием. Во рту имеется тёрка, образованная роговыми зубчиками. На голове находятся одна или две пары щупалец. У их основания или на концах первой пары располагаются глаза. Встречаются как растительноядные улитки (питаются, соскабливая водоросли или ткани высших растений, - прудовик, катушка, виноградная улитка), так и хищные формы (рапаны поедают мидий, устриц).
Значение. Виноградных улиток человек использует в пищу. Многие брюхоногие являются вредителями сельскохозяйственных растений (слизни, виноградные улитки и др.). Малый прудовик служит промежуточным хозяином печёночного сосальщика. Хищные улитки (рапаны) наносят вред устричным и мидиевым поселениям.

Класс Двустворчатые

Класс Головоногие

Представители: осьминоги, кальмары, каракатицы и др. Высокоорганизованные моллюски. Обитают в основном в тёплых морях и океанах. Все хищники. Характерен реактивный способ движения.
Тело состоит из головы и туловища. Нога преобразована в щупальца (руки) , окружающие ротовое отверстие. Раковина внутренняя, часто редуцированная или отсутствует. Имеется хрящевой «череп» и две толстые роговые челюсти (клюв) , которыми захватывается и измельчается пища. У головоногих две пары слюнных желёз, выделения одной из них могут быть ядовитыми. Кровеносная система обычно замкнутая. Сердце имеет 1 желудочек и 4 предсердия. В заднюю кишку открывается проток чернильной железы . Мозг имеет сложное строение. Пара крупных глаз очень схожа по строению с глазами млекопитающих. Головоногие раздельнополы, размножаются, как правило, один раз в жизни. Развитие прямое.
Значение. Объект промысла (каракатицы, кальмары, осьминоги). Источник фармацевтического сырья. Из секрета чернильного мешка каракатиц и кальмаров получают китайскую тушь и акварельную краску сепию.

Тип членистоногие

Общая характеристика

Покровы тела представлены кутикулой и гиподермой . Кожно-мускульный мешок, свойственный предыдущим группам, редуцируется, что связано с наличием плотного наружного покрова. Кутикула образована хитином. Хитин может быть пропитан солями извести (панцирь высших ракообразных) или белками (насекомые). Хитиновый покров выполняет защитную функцию - защищает от высыхания и механических воздействий. Благодаря нему членистоногие первыми из животных заселили сушу. Кроме того, хитиновый покров является наружным скелетом - к его внутренней поверхности прикрепляются пучки поперечно-полосатой мускулатуры. Появление этого типа мускулатуры обеспечило увеличение подвижности. Хитиновый покров нерастяжим, поэтому рост членистоногих сопровождается линькой .
Органы движения. У примитивных членистоногих каждый членик тела имеет пару членистых конечностей . Конечности подвижно соединены с телом суставами. В процессе эволюции часть конечностей была утрачена, другие специализировались для выполнения определённой функции и преобразовались в органы чувств, ротовые органы, ходильные и плавательные конечности, жабры, паутинные бородавки и др.
Полость тела смешанная - миксоцель . Она образуется при слиянии участков первичной и вторичной полости.
Пищеварительная система имеет три отдела - передний (рот, глотка, пищевод, иногда зоб), средний (желудок, средняя кишка) и задний (задняя кишка и анальное отверстие). Передний и задний отделы имеют кутикулярную выстилку. Имеются печень и слюнные железы. Появляется сложноустроенный ротовой аппарат из видоизменённых передних конечностей. Он специализирован к определённому виду пищи (грызущий, лижущий, сосущий, колюще-сосущий и др.).
Кровеносная система незамкнутая. Имеется сердце , расположенное на спинной стороне тела. По сосудам циркулирует гемолимфа. Это бесцветная жидкость, которая имеет двойную природу: частично соответствует крови, частично - полостной жидкости. Из сосудов гемолимфа изливается в полость тела и омывает внутренние органы. Затем она вновь поступает в сосуды и сердце.
Дыхательная система. У первичноводных членистоногих имеются жабры , у наземных - лёгочные мешки и трахеи (хитиновые трубочки, пронизывающие всё тело).
Выделительная система представлена видоизменёнными метанефридиями (зелёные и коксальные железы ), жировым телом (почка накопления) или мальпигиевыми сосудами (выросты кишечника). У ракообразных присутствуют зелёные железы, у паукообразных - мальпигиевые сосуды и коксальные железы, у насекомых - мальпигиевые сосуды и жировое тело.
Нервная система состоит из надглоточного и подглоточного нервных узлов (ганглиев), соединённых нервными тяжами в окологлоточное кольцо, и брюшной нервной цепочки.
Органы чувств: зрения, вкуса, осязания, обоняния, слуха и равновесия.
Размножение и развитие. Как правило, раздельнополы. Хорошо выражен половой диморфизм. У самки яичники и яйцеводы, у самца семенник, семяпровод и семяизвергательный канал. Размножение только половое, встречаются партеногенез и живорождение. Развитие может быть прямое, с полным или неполным метаморфозом. Рост возможен только при периодической линьке - сбрасывании старой кутикулы и образовании новой.
Происхождение и ароморфозы. Членистоногие произошли от древних морских кольчатых червей. К возникновению типа привели следующие ароморфозы: возникновение наружного скелета, членистых конечностей, поперечно-полосатой мускулатуры.

Класс Ракообразные

Конечности. Головогрудь и брюшко состоят из неодинаковых сегментов, каждому из которых соответствует пара членистых конечностей, специализированных к выполнению определённой функции. Речной рак имеет следующие конечности: сегменты головогруди несут 13 пар конечностей: антеннулы (органы обоняния), антенны (органы осязания), верхние челюсти и 2 пары нижних челюстей (измельчение пищи); 3 пары ногочелюстей (подача пищи в рот) и 5 пар ходильных ног (передвижение), 1-я пара ходильных ног преобразована в клешни (защита и нападение); на брюшке 6 пар конечностей: 5 пар плавательных ног (у самца 1-я и 2-я пары - совокупительный орган, у самки плавательные ножки удерживают яйца и детёнышей), конечности 6-й пары вместе с 7-м сегментом брюшка образуют хвостовой плавник.

Каким образом в процессе развития животного мира произошел переход от одноклеточных к многоклеточным? Этот вопрос нельзя считать в какой-то степени решенным, и приходится ограничиваться более или менее вероятными гипотезами.


1 - колония воротничковых жгутиконосцев типа Sphaeroeca с монотомическим размножением, 2 - колония воротничковых жгутиконосцев типа Proterospongia с палинтомическим размножением и половым процессом, 3 - ранняя фагоцителла I без рта, 4 - пластинчатые (Placozoa) без рта, 5 - губки (Spongia) без рта и кишечника, 6 - поздняя фагоцителла II со ртом, 7 - первичные кишечнополостные типа гастреи (двуслойные со ртом), 8 - первичные турбеллярии (тип
Plathelminthes) - паренхиматозные со ртом, смещенным к брюшной стороне, трехслойные, 9 - бескишечные турбеллярии с дальнейшей дифференциацией клеток и смещением рта на брюшную сторону

Наиболее старая и очень распространенная среди зоологов гипотеза заключается в том, что переходными к многоклеточным формам были колониальные организмы, подобные колониальным жгутиковым. Среди этих организмов есть и такие, которые состоят из нескольких совершенно сходных клеток, без следов какой-либо клеточной дифференцировки (Gonium, Pandorina и др.). Такой организм можно рассматривать как колонию разделившихся, но не разошедшихся клеток. В таком случае предполагается, что сначала колонии состояли из одинаковых клеток, а затем возникла дифференцировка клеточных элементов.

В 70-х годах прошлого столетия Э. Геккель, использовав данные эмбриологии, и особенно работы русского зоолога А. О. Ковалевского, разработал теорию происхождения многоклеточных, получившую название теории гастреи.

Э. Геккель - автор биогенетического закона (сформулированного им почти одновременно с Ф. Мюллером), по которому «онтогения представляет собой краткое повторение филогении»,- видел во всех стадиях дробления яйца повторение особенностей исчезнувших предков многоклеточных животных. Первый гипотетический одноклеточный (амебоидный) предок, соответствовавший стадии яйца, был назван цитея (Cytea). От него, по мнению Геккеля, произошли все голозойные организмы. Шаровидная колония амебоидных клеток (организмов) превратилась в единый организм - морею, которая соответствовала стадии морулы. Следующий гипотетический предок - бластея - возник в результате скопления студенистого вещества в центре (колонии) морей и распределения его клеток (членов колонии) по периферии. В эмбриональном развитии ему соответствует стадия бластулы. Гипотетическая бластея вначале передвигалась при помощи псевдоподий, которые позднее превратились в жгутики. Наконец, возникла гастрея путем впячивания передней стенки бластеи. Снаружи клетки гастреи продолжали нести жгутики, обеспечивающие ее движение. Внутренний слой клеток утратил жгутики и превратился в первичную кишку. Место впячивания дало первичный рот, при помощи которого кишечная - гастральная - полость сообщалась с внешней средой. В гастральной полости происходило переваривание пищи.

Наружный слой гастреи дал ее потомкам эктодерму, внутренний - энтодерму. Таким образом, по теории Геккеля, все многоклеточные животные, включая и губок, произошли от одной прародительской формы - гастреи. Они унаследовали от нее два первичных зародышевых листка - энто- и эктодерму - и первичный кишечник. Все ткани и органы много-клеточных позднее развились из этих образований. Кожные покровы и кишечник гомологичны у всех многоклеточных, так как имеют общее происхождение. Теория Геккеля завоевала многочисленных сторонников и долгое время господствовала в науке, но одновременно вызывала и справедливую критику.

Происхождение многоклеточных по И. И. Мечникову

Одним из серьезных оппонентов этой теории был И. И. Мечников. Его самыми существенными возражениями Геккелю были следующие: 1. Образование гаструлы путем инвагинации нельзя считать первичным, так как у наиболее примитивных многоклеточных (кишечнополостные, бескишечные турбеллярии) гаструляция происходит путем множественной иммиграции клеток в полость бластулы. 2. Образование первичного кишечника с полостным пищеварением не могло быть первичным, так как низшим многоклеточным в большой степени свойственно внутриклеточное пищеварение. 3. Процесс инвагинации в филогенезе не мог быть обусловлен ни физиологическими, ни экологическими причинами. И. И. Мечников предполагал, что предком многоклеточных животных (Metazoa) была колония жгутиковых. Первичный многоклеточный организм был однослойным и шаровидным (бластея, по Геккелю), покрытым жгутиками. Одни и те же клетки выполняли функции движения и поглощения пищи. После захвата пищевых частиц клетки теряли жгутики и уходили с поверхности во внутреннюю часть организма. Там происходило переваривание пищи, после чего клетки могли вновь возвращаться на поверхность и формировать новый жгутик. Таким образом произошло первичное, факультативное (временное) выделение наружного слоя клеток - кинобласта, имеющих функцию движения, и внутренней массы клеток - фагоцитобласта, занимающихся пищеварением. В результате эволюции это разделение закрепилось и образовался предок всех многоклеточных - паренхимелла, или фагоцителла (второе название применено И. И. Мечниковым позже).


Фагоцителла размножалась половым путем. Оплодотворенные яйца проходили полное равномерное дробление. Потомки фагоцителлы при оседании на дно и переходе к прикрепленному образу жизни дали ветвь, идущую к губкам. Плавающие фагоцителлы превратились в дальнейшем в первичных кишечнополостных, причем из фагоцитобласта у них сформировался первичный кишечник с ротовым отверстием. Часть потомков фагоцителлы перешла к жизни на дне; у ползающих форм тело сплющилось, возникла билатеральная симметрия, из них возникли первичные бескишечные ресничные черви.

Гипотеза И. И. Мечникова была основана на большом материале собственных исследований по эмбриологии низших многоклеточных (губок и кишечнополостных). Он впервые поставил важную проблему эволюции самого онтогенеза, изменения способов гаструляции и клеточной дифференциации у разных групп низших кишечнополостных. Он внес много нового в учение о первичных зародышевых листках и их эволюции.

Сравнительно недавно выдвинута еще одна гипотеза происхождения многоклеточности, называемая полиэнергидной или гипотезой целлюляризации. Автор ее - ученый И. Хаджи. Сначала он считал предками многоклеточных животных многоядерных жгутиконосцев, с большим числом жгутиков, а позднее инфузориеобразные формы (инфузорий, до возникновения у них ядерного дуализма). От них, по мнению Хаджи, пошли две ветви животного мира - одна к современным инфузориям, другая к самым примитивным (по его мнению) многоклеточным- бескишечным ресничным червям (Acoela). И. Хаджи сравнивал строение инфузорий и бескишечных турбеллярий и нашел у них много внешнего сходства. Из этого он делает заключение, что органеллы простейших превратились в органы многоклеточных, при этом увеличение (умножение) количества ядер и последующее обособление около них плазмы (целлюляризация) привело к возникновению многоклеточности. У современных Acoela, по мнению автора, этот процесс еще не закончился, отчего энтодерма этих животных имеет состояние плазмодия. В действительности же это состояние синцития, отсутствие границ между клетками возникает у этих животных вторично, в процессе онтогенеза, причем далеко не у всех видов. В последнее время удалось подтвердить истинно клеточное строение Acoela; с помощью электронного микроскопа были обнаружены клеточные мембраны в их наружном эпителии.

Сравнительный анализ строения тела инфузорий и бескишечных турбеллярий показал, что истинных гомологий между этими группами организмов провести нельзя. Кроме того, весь эмбриологический материал находится в противоречии с этой гипотезой.

А. В. Иванов в 1968 г. опубликовал книгу «Происхождение многоклеточных животных», написанную на основе анализа большого фактического материала и критического обзора литературных данных. Он приходит к заключению, что наиболее убедительной гипотезой происхождения многоклеточных является гипотеза фагоцителлы И. И. Мечникова.

Предками многоклеточных (Metazoa), по-видимому, были гетеротрофные воротничковые жгутиконосцы (Craspedomonadina) из отряда протомонадных (Protomonadida). От шаровидной свободноплавающей колонии, состоящей из одинаковых жгутиконосцев, возникали более сложные, с большей интеграцией колонии. Первоначально размножение было бесполым, колония распадалась на отдельные клетки, которые затем превращались в новые колонии. Возникновение полового процесса привело к разделению клеток колонии на соматические и половые. Одновременно произошла дифференциация переднезадней оси колонии и определение ее переднего и заднего концов (полюсов). Радиальная симметрия колонии приобрела многолучевой характер.

Вначале половые клетки - гаметы - были одинаковыми и наблюдалась изогамная копуляция, а позднее произошла дифференциация мужских и женских гамет и возникла анизогамия. Оплодотворенное яйцо - зигота - начинало интенсивно делиться до тёх пор, пока не возникала новая колония, подобная бластуле.

Дальнейшая дифференциация колонии привела к ее превращению в самостоятельный организм, подобный фагоцителле. При этом произошло вначале временное, или факультативное, а затем постоянное обособление наружного слоя, или кинобласта, и внутреннего, или фагоцитобласта (по И. И. Мечникову). Образовавшийся организм - фагоцителла -размножался как половым, так и бесполым путем. Первый эмбриональный этап развития приводил к образованию однослойной свободной личинки. Вторым этапом было постэмбриональное развитие, которое заключалось в росте животного и дальнейшей дифференциации его клеток. При этом часть клеток уходила с поверхности личинки внутрь, образуя внутренний слой. Таким образом возникла двух-слойность фагоцителлы. Затем из соматических выделились половые клетки и возникла половая зрелость организма.

Дальнейшим этапом развития А. В. Иванов предполагает образование ротового отверстия на заднем полюсе фагоцителлы. Вначале ее амебоидные фагоциты подходили в любом месте к поверхности и захватывали пищевые частицы. Однако с возникновением переднего конца тела координированное биение ресничек кинобласта создавало скопление (концентрацию) пищевых частиц на заднем конце тела, в так называемом мертвом пространстве. Здесь возникает ротовое отверстие, через которое фагоцитам легче захватывать пищу. Это обстоятельство согласуется с фактическим материалом и объясняет образование первичного рта у всех многоклеточных на заднем, вегетативном полюсе зародыша.

A. В. Иванов считает губок и бескишечных турбеллярий наиболее близкими формами к исходному общему предку всех Metazoa - фагоцителле.

Губки перешли к сидячему образу жизни и очень рано отделились от общего ствола Metazoa. Их предками были, по-видимому, схожие с фагоцителлой организмы, у которых еще не было ни рта, ни кишечника. Поверхностный слой клеток (кинобласт) погрузился внутрь и стал выполнять вместо двигательной вододвигательную функцию, а внутренний слой стал наружным. Так произошло известное выворачивание слоев тела у губок. Однако их свободноплавающие личинки- паренхимулы - очень похожи на личинок низших многоклеточных - планулы - и на гипотетическую раннюю фагоцителлу.

Вторая ветвь развития идет к общему предку двухслойных животных, от которого затем произошли два типа - кишечнополостные (Coelenterata) и гребневики (Ctenophora). Вначале эти формы были плавающими. Прикрепленный образ жизни привел к формированию примитивных кишечнополостных, близких к гидроидным полипам, от которых позднее возникли кораллы и плавающие медузы. Гребневиков можно считать прямыми потомками примитивных плавающих двухслойных, сохранившими первичный способ передвижения за счет ресничек гребных пластинок, гомологичных кинобласту фагоцителлы.

Третья ветвь развития от фагоцителлы идет к бескишечным турбелляриям. Их формирование связано с переходом к ползающему образу жизни, что способствовало возникновению билатеральной симметрии, оформлению переднего и заднего концов тела и образованию рта. Последний возникает первоначально на заднем конце тела, а затем перемещается на брюшную сторону.

Таким образом, по теории А. В. Иванова, ресничные черви - турбеллярии, с одной стороны, и примитивные предки кишечнополостных и гребневиков, с другой стороны, отходят почти одновременно от поздней фагоцителлы, у которой уже имелся рот, но фагоцитобласт еще не эпителизировался (кишечник еще не сформировался). В дальнейшем эти группы развиваются в какой-то мере параллельно.

B. Н. Беклемишев, который также разделяет гипотезу фагоцителлы И. И. Мечникова, обращает внимание на большое сходство (в главных чертах организации) взрослых гребневиков и турбеллярий с личинками кишечнополостных. Он объясняет это сходство общностью происхождения обеих групп (гребневиков и турбеллярий) от более или менее близких предков. По В. Н. Беклемишеву, гребневики и турбеллярий имеют укороченный жизненный цикл по сравнению с кишечнополостными. Он предполагает, что гребневики и турбеллярий развились из предков кишечнополостных путем неотении, т. е. из их личиночных форм, перешедших к прогрессивной эволюции. Дальнейшее развитие этих групп шло в некоторой степени параллельно, или конвергентно, что проявляется в сходстве строения (симметрии) нервной системы и в образовании аборального статоциста. Однако гребневики формировались как планктонные (за редким исключением) формы, а турбеллярий - как донные. Вследствие ползания по дну у них возникла билатеральная симметрия.

Проблема происхождения многоклеточных и филогенетических связей между низшими многоклеточными - губками, кишечнополостными, гребневиками и турбелляриями - очень сложна. Ее нельзя считать полностью разрешенной. Для этого требуются новые данные по сравнительной цитологии, эмбриологии, физиологии указанных групп, с применением новейших методов исследования, таких, как электронная микроскопия и др.