С тех пор, как фон Клейст – не военачальник, священник – решил ухватить рукой банку (бутылку), заполненную водой, с опущенным туда электродом, прошло немало времени. Конструкций конденсаторов сегодня великое множество. Бессильны обещать рассмотреть 100%, дадим понятие о принципах работы конденсатора, технических характеристиках. Надеемся, обзор выйдет удачным.

Осторожно, работает конденсатор: история лейденской банки

Проще начать статическим зарядом. Отмечено учеными, проводник способен накапливать поверхностью электричество. Плотность распределения одинакова по площади. Ключевое отличие металлов от диэлектриков, накапливающих заряд. Обживая кусок железа, носители тока стремятся занять крайнее положение, отталкиваясь взаимно. В результате скапливаются равномерно по поверхности.

На принципе созданы генераторы, способные копить заряд потенциалом единицы миллионов вольт. При прикосновении к токонесущей части человек попросту испепелится. Аналогично действуют конденсаторы. Сформированы проводниками, площадь которых сильно увеличена. Достигается различными методами. В электролитических конденсаторах алюминиевая фольга скатывается рулоном. Небольшой цилиндр содержит метры металлической ленты.

Поясним работу. Когда на металлической (проводящей поверхности) появляется заряд, начинается поверхностное распределение. В 1745 году священник-юрист Эвальд Юрген фон Клейст обнаружил: удерживая в руках банку с водой, запасает внутри электричество. Ладонь служит проводящей обкладкой, объем жидкости (по внешней поверхности) — другой. Стекло выступает диэлектрическим барьером. При опускании в воду электрода носители стремятся занять крайнее положение, бороздя поверхность. Через стекло поле действует на ладонь, ответно начинаются схожие процессы (заряд притягивает носители противоположного знака).

Позже емкость догадались обернуть фольгой, получилась лейденская банка – первый дееспособный конденсатор на Земле, изобретенный человеком. Произошло, когда Питер ван Мушенбрук впечатлился силой полученного в процессе опыта ударом электричества. Стало понятно: опыты небезопасны, руку следует заменить. Ученые писал: второй раз избегает испытывать судьбу ради королевства Франции. Датчанин Даниэль Гралат стал первым догадавшимся соединить лейденские банки параллельно, обеспечивая более высокую емкость системе. Напоминает современный свинцовый аккумулятор задумкой.

Смешно, подобные устройства использовались вплоть до 1900 года, входящая в обиход радиосвязь вынудила искать новые пути решения проблемы, использовались сравнительно высокие частоты электрических сигналов. В результате появились первые бумажные конденсаторы, маслянистое полотно отделяло друг от друга две обкладки свернутой цилиндром фольги. Постепенно с развитием производства в качестве изоляторов стали применяться иные материалы:

  1. Керамика;
  2. Слюда;
  3. Бумага.

Истинный прорыв в конструировании конденсаторов произошел, когда люди догадались диэлектрик заменить слоем оксида окисленной поверхности металла. Сказанное касается электролитических конденсаторов. Один цилиндр фольги покрыт оксидом. Чаще сегодня используется травление (намеренное окисление материала действием агрессивных сред), если требования технических характеристик велики, применяется анодирование. Позволяя получить гладкую поверхность, плотно прилегающую к электроду противоположного знака.

Обкладками выступают оксидированная фольга и бумага, пропитанная электролитом. Разделены тончайшим слоем оксида, позволяя получить потрясающие емкости, единицы-десятки микрофарад сравнительно малого объема. Технические характеристики конденсаторов просто потрясающие. Второй рулон алюминиевой фольги послужит простым проводником электричества, считается одним контактом. Оксид характеризуется удивительным свойством – проводит ток в одном направлении. При подключении электролитического конденсатора неправильной стороной происходит взрыв (разрушение диэлектрика, закипание электролита, образование пара, разрыв корпуса).

Отказываясь служить диэлектриком, разделяющий слой становится проводником. Из-за резкого повышения температуры области начинается лавинообразная реакция меж металлом и электролитом, конденсатор взбухает. Видели многие радиолюбители, избегаем рассказывать, процессе мало веселого предоставит внимательному зрителю.

Зачем конденсатору диэлектрик

Было замечено: если поместить меж пластинами конденсатора изолирующий материал, емкость возрастает. Долго ломали головы ученые мужи, было раскрыто понятие диэлектрической проницаемости. Оказывается, согласно теореме Гаусса можно связать с емкостью конденсатора напряженность поля обкладок. Получается, изолятор обеспечивает накопление зарядов металлами, собирая поверхностью носители противоположного знака. Полагаем, читатели догадались: те создают поле, направленное навстречу исходному, вызывая ослабление, повышающее вместимость конструкции.

Диэлектрик конденсатора

Таблицы показывают: бумага, керамика выглядят не лучшими материалами. Значения серной кислоты достигают 150 единиц, почти на два порядка выше. Причем в чистом виде вещество признано изолятором. Вероятно, настанет день, когда принцип действия конденсатора будет реализован не раствором, а серной кислотой. Известные свинцовые аккумуляторы по-другому запасают энергию (реакция). Рассмотренные варианты не единственные, распространены шире.

Глобально конденсаторы поделим двумя семействами:

  1. Электролитические (полярные).
  2. Неполярные.

Рассказывали обустройство первых. Разница ограничивается материалом обкладок. Оксид титана снабжен диэлектрической проницаемостью близкой сотне. Понятно, материал предпочтительней для создания высококлассных изделий. Стоимость кусается. Титанат бария демонстрирует диэлектрическую проницаемость повыше. Практически любой конденсатор сформирован обкладками. Диэлектрик добавляет емкости изделию. Чаще лучшие модели конденсаторов содержат ценные металлы: палладий, платину.

Маркировка, технические характеристики конденсаторов

Маркировка конденсаторов содержит параметр максимально допустимого рабочего напряжения. Обозначение приводится согласно ГОСТ 25486, затем уточнения достигают отраслевых стандартов. Например, номинал проставляется согласно ГОСТ 28364. Отдельного стандарта по электролитическим конденсаторам найти практически невозможно. Однако авторы сделали, читателям предлагаем проштудировать ГОСТ 27550. На корпусе любые виды конденсаторов содержат маркировку:

Маркировка корпуса

  • Логотип изготовителя.
  • Тип конденсатора.

Сложно сказать определенно, большинство электролитических конденсаторов снабжены маркировкой-литерой К, несколькими цифрами, часто разделенными дефисом. Следуя логике, найдем в интернете соответствующий стандарт либо другие материалы.

  • По правилам ГОСТ 28364, номинал состоит из 3-5 символов, присутствует буква.

П означает приставку пико, н – нано, мк – микро. Если номинал дополнен дробной частью, занимает последнее место, вослед литере. Емкостной ряд (неполный) значений приводится ГОСТ 28364 на примерах. Выполняются нормы этого стандарта практически? Не для электролитических конденсаторов. Вызвано, по-видимому, большими номиналами. Запросто на К50-6 встретите надпись наподобие 2000 мкФ. Согласно ГОСТ 28364, должно выглядеть наподобие 2м0. Для электролитических конденсаторов применяется ГОСТ 11076. Наряду с кодированными обозначениями (ГОСТ 28364) допускается традиционная запись (2000 мкФ). Видите, назначение конденсаторов часто определяет способ маркировки. Электролитические часто выступают составной частью фильтров цепи питания. Здесь нужен больший номинал, функциональность сильно отличается принципа действия конденсаторов разделительных ветвей цепей переменного тока.

  • Если по былым нормам рабочее напряжение маркировкой конденсатора ставилось на первое место, в современных моделях наоборот. Обозначение выражено вольтами.

Обозначения электролитического конденсатора

Подразумевается рабочее напряжение, не пробивное. Конденсаторные установки легко сгорают, сожженные повышенными значениями. Тоньше слой диэлектрика, проще происходит пробой. Существует противоречие между дистанцией, разделяющей обкладки (меньше — выше номинал) и желанием повысить рабочее напряжение.

  • Допустимое отклонение емкости чаще замалчиваются.

Процесс старения выводит номинал за рабочие пределы. Можно сказать, что то, для чего нужен конденсатор, не изготовишь при помощи просроченных изделий. Однако радиолюбители делают по-своему. Прозванивают конденсатор, определяют новый номинал, заручившись помощью тестера, пользуются.

  • Литера В стоит для конденсаторов всеклиматического исполнения.
  • Перед зарядкой конденсатора попробуйте понять, полярный ли (электролитический).

Изделие способно взорваться. Разумеется, полярный конденсатор нельзя включать в цепь переменного тока. Единого типа маркировки не предусмотрено, оговаривается бумаги: требования могут быть указаны отраслевыми техническими условиями. Например, знаки плюса/минуса. На импортных изделиях отрицательный полюс помечается светлой полосой темного корпуса.

  • Обозначение довершается датой выпуска (месяц, год), ценой.

Понятно, последнее при современных экономических условиях неактуально.

Обратите внимание, конденсатор способен долго хранить заряд. Чревато опасностью получить удар током. Любой ремонтник, работающий с радиоаппаратурой, знает: началу ремонта импульсного блока питания предшествует процесс разрядки конденсатора. Чаще делается при помощи запрещенной стандартами лампочки, вкрученной в патрон. Два оголенных провода замыкают на токонесущие части цепи, импульс на короткое время зажигает спираль. Кстати, конструкцию часто вставляют взамен предохранителей, чтобы понять, по-прежнему ли ток велик в цепи (означает наличие неисправности, вызывает необходимость дальнейшей диагностики).

Выявление неисправности конденсатора требует сноровки, при наличии специфических знаний осуществимо. Нужно иметь на руках простейший мультиметр. Уже рассказывали, как проверить конденсатор при помощи тестера, направляем читателей на соответствующий обзор, сами с позволения почтенной публики спешим откланяться.

Конденсаторы выполняют множество полезных функций в схемах электронных устройств, несмотря на их простую конструкцию. Если разобрать до деталей несколько радиоэлектронных устройств, и сосчитать их, то окажется, что количество, рассматриваемых в данной статье элементов, превысит количество других отдельных радиоэлектронных приборов, в том числе и . Ввиду такого обстоятельства, нам следует уделить особое внимание конструкции, устройству и принципу работы конденсаторов.

Принцип работы конденсатора

Для большего понимания принципа работы конденсатора рассмотрим его конструкцию. Простейший конденсатор состоит из двух металлических пластин, называемых обкладками. Между обкладками расположен диэлектрик, то есть веществом, которое практически не пропускает электрический ток. Обкладки, как правило, имеют одинаковые геометрические размеры (квадрат, прямоугольник, круг) и равны по площади. Пластинки выполняются из алюминия, меди или драгоценных металлов. Наличие в составе обкладок драгоценных металлов вызывает повышенную охоту на радиорынках за советскими образцами данного радиоэлектронного элемента.

В качестве диэлектрика, расположенного между пластинами, применяют сухую бумагу, керамику, фарфор, воздух и т.п.

Принцип работы конденсатора состоит в следующем. Если одну пластину подключить к плюсу источника электрического тока, а втору – к минусу, то обе пластины зарядятся разноименными зарядами. Заряды будут продолжать удерживаться на обкладках даже после отсоединения источника питания. Это поясняется тем, что заряды разных знаков («+» и «-») стремятся притянуться друг к другу. Однако этому препятствует диэлектрик (материал, не проводящий заряды), расположенный на их пути. Поэтому заряды, распределенные по всей площади обкладок, остаются на своих местах и удерживаются силами взаимного притяжения.

Поляризация диэлектрика

Такое явление называется накоплением электрических зарядов. А конденсатор называют накопителем электрического поля, так как вокруг каждого заряд действует электрическое поле, под действием которого диэлектрик поляризуется, то есть молекулы его становятся полярными – имеют четко выраженные положительный и отрицательный полюса. Полюса молекул непроводящего вещества ориентированы вдоль линий электрического поля, созданного зарядами, расположенными на обкладках. Причем отрицательный полюс молекулы направлен к положительной пластинке, а положительный – к отрицательной.

Способность накапливать электрические заряды характеризуется емкостью конденсатора, отсюда происходит обозначение его на чертежах электрических схем C (англ. c apacitor накопитель ). Аналогично емкости сосуда – чем больше емкость сосуда, тем больше в нем помещается жидкости.

Емкость конденсатора относится к главному параметру и измеряется в фарадах [Ф ], названная в честь выдающегося английского физика Майкла Фарадея.

Следует обратить внимание: правильно говорить не «один фарад», а «одна фарада».

Емкостью в одну фараду обладает конденсатор, который накапливает заряд, величиной в , если приложит к пластинкам напряжение один вольт.

Ранее часто можно было услышать такое утверждение, что емкость в 1 Ф – это очень много – почти емкость нашей планеты. Однако сейчас, с появлением суперконденсаторов так больше не говорят, поскольку емкость последних достигает сотни фарад. Тем не менее в большинстве электронных схем используют накопители меньшей C – пикофарады, нанофарады и микрофарады.

Расчет емкости конденсатора

Расчет емкости конденсаторов довольно прост. Она определяется тремя параметрами: площадью пластины S , расстоянием между пластинами d и типом диэлектрика ε :

Физический смысл данной формулы следующий: чем больше площадь обкладок, тем больше зарядов на ней может расположиться (накопиться); чем больше расстояние между пластинами и соответственно между зарядами, тем меньшая сила их взаимного притяжения – тем слабее они удерживаются на обкладках, поэтому зарядам легче покинуть обкладки, что приводит к снижению их числа, а следовательно и уменьшению емкости накопителя электрического поля.

Диэлектрическая проницаемость ε показывает, во сколько раз заряд конденсатора с данным диэлектриком превосходит заряд аналогичного накопителя, если между его пластинками той же площади и находящихся на таком же расстоянии вакуум. Для воздуха ε равна единице, то есть практически ничем не отличается от вакуума. Сухая бумага обладает диэлектрической проницаемостью в два раза больше воздуха; фарфор – в четыре с половиной раза ε = 4,5. Конденсаторная керамика имеет ε = 10..200 единиц.

Отсюда вытекает важный вывод: чтобы получить максимальную емкость при сохранении прежних геометрических размеров, следует применять диэлектрик с максимальной диэлектрической проницаемостью. Поэтому в широко распространённых плоских конденсаторах используют керамику.

Конденсатор в цепи постоянного и переменного тока

Поскольку между обкладками конденсатора находится диэлектрик, то электрический ток от одной пластинки к другой протекать не может, следовательно, образуется разрыв электрической цепи для постоянного и для переменного тока. Поэтому уверенно можем сказать, что конденсатор не пропускает постоянный ток! Переменный ток он также не пропускает, однако переменный ток постоянно перезаряжает накопитель, что создает картину, будь-то переменный тока проходит сквозь обкладки конденсатора.

Если к обкладкам разряженного конденсатора приложить постоянное напряжение, то в цепи начнет протекать электрический ток. По мере его заряда ток будет снижаться и при равности напряжений на пластинках и источника питания, ток перестанет протекать – образуется как бы разрыв электрической цепи.

Конденсаторы постоянной емкости

Емкость таких конденсаторов не предусмотрено изменять в процессе эксплуатации радиоэлектронной аппаратуры. Они отличаются широчайшим разнообразием и геометрическими размерами – от спичечной головки до огромных шкафов и находят наибольшее применение в печатных платах электронных устройств. Самые распространенные экземпляры показаны на фото.

Конденсаторы переменной емкости КПЕ

Для изменения емкости отдельного узла электрической цепи непосредственно в процессе эксплуатации электронного устройства применяют конденсаторы переменной емкости (КПЕ). Главным образом КПЕ использовались в приемниках старого образца для настройки колебательного контура на резонансную частоту радиостанции. Однако сейчас вместо КПЕ применяют варикапы – полупроводниковые диоды, емкость которых определяется величиной подведенного обратного напряжения. Теперь достаточно изменить напряжение, подаваемое на варикап, чтобы изменить емкость последнего, а результате и частоту колебательного контура.

Как правило, КПЕ состоит из ряда параллельно расположенных металлических пластин, разделенных воздухом, поэтому габариты их весьма значительны. Варикапы, напротив – имеют гораздо меньшие габариты, потому и заменили КПЕ.

Подстроечные конденсаторы используются в узлах окончательной настройки радиоэлектронной аппаратуры. Чаще всего они встречаются в различного рода колебательных контурах или в устройствах, связанных с формированием частоты; в измерительных приборах. Также можно найти их в щупах цифровых осциллографов. Там они используются для устранения собственной емкости измерительных щупов, что позволяет максимально исключить погрешности при выполнении измерений высокочастотных сигналов.

Главным отличием и преимуществом электролитических конденсаторов является большая емкость при малых габаритах. Благодаря такому свойству они широко используются в качестве электрических фильтров для сглаживания выпрямленного напряжения, что делает их неотъемлемой частью любого блока питания.

Конструктивно электролитический конденсатор из алюминиевой фольги, которая служит одной из обкладок. Фольга смотана в рулон в виде цилиндра, что позволяет увеличить активную площадь обкладки. На фольгу наносится оксидный слой, который является диэлектриком. Второй обкладкой служит электролит или слой полупроводника. По этой причине электролитические конденсаторы являются полярными (значительно реже применяются и неполярные), то есть необходимо соблюдать полярность при включении их в цепь. В противном случае он выйдет из строя, чаще всего – взорвется. Поэтому следует быть крайне внимательным при включении такого радиоэлектронного элемента в электрическую цепь, что часто забывают делать при замене данного компонента.

Отрицательный вывод нового электролитического конденсатора короче положительного, а на корпусе рядом с ним наносится соответствующий знак – минус. В советской маркировке напротив, маркируется положительный вывод, со стороны которого на корпус наносится знак «+».

Также на корпусах электролитических конденсаторов в обязательном порядке присутствуют значения трех основных параметров: номинальное значение емкости , максимальное допустимое напряжение и максимальная рабочая температура .

Если с емкостью и допустимой температурой все понятно, то особое внимание следует направить на напряжение.

На электролитический конденсатор нельзя подавать напряжение, величина которого больше, чем указано на корпусе . В противном случае он взорвется. Большинство разработчиков электронной аппаратуры советуют не превышать напряжение на пластинках больше 80 % от допустимого значения.

Обозначение конденсаторов в схемах

На чертежах электрических схем обозначение конденсаторов строго стандартизировано. Однако данный радиоэлектронный элемент можно всегда узнать в схеме по двум параллельным, рядом расположенным вертикальным черточкам. Две вертикальные лини обозначают две обкладки. Эти черточки подписываются латинской буквой C , рядом с которой указывается порядковый номер элемента в схеме, а ниже или сбоку указывается значение емкости в микрофарадах или пикофарадах.

Маркировка конденсаторов

По мере развития электроники развивается и элементная база. Поскольку многие страны производят собственные радиоэлектронные элементы, то и маркировка их отличается от маркировки радиоэлектронных элементов других стран. Поэтому на первых этапах промышленного производства электроники применялось много разнообразных типов маркировки, однако стремление к унификации привело к более-менее ее упорядочению. Это позволило привести и маркировку конденсаторов к общим правилам. А преимущество здесь очевидное – радиоэлектронному элементу, произведенному в одной стране теперь можно довольно просто подобрать аналог производства другой страны. Идеально было бы свести все типы обозначений и маркировки привести к единому типу, что практически полностью уже выполнено.

Однако до сих пор широкий оборот имеют советские конденсаторы, отличающиеся небольшим, но разнообразием маркировки. В советской маркировке было задействовано все – цифры, буквы и цвета. Причем на корпуса элементов наносились как цифры с буквами, так и цвета, цифры и буквы. Цифры обозначают значение, буквы – единицы измерения.

Более распространенный тип маркировки состоит из цифр, которые обозначают емкость в пико фарадах , не путать с фарадами! Всегда нужно помнить, что в отличие от резисторов, маркировка которых выполняется в омах, базовой величиной размерности независимо от способа маркировки являются пико фарады (если цифры отделяются запятой, — то микро фарады ). В общем, отсчет емкости начинается с пикофарад .

Также, ранее применялась исключительно цветовая маркировка – сплошной цвет с цветной точкой. Определить параметры можно только, воспользовавшись справочником.

Рассмотренные выше типы маркировки постепенно выходят из обихода, однако о них всегда помнят специалисты, выполняющие ремонт советской аппаратуры, в которой радиоэлементы имеют «старое» обозначение.

Наиболее удачным и совершенным способом обозначения электронных элементов является цифровое кодирование. Цифровое кодирование конденсаторов, как и резисторов, предполагает использование всего трех цифр. Такой подход позволяет реализовать множество комбинаций. Две цифры, расположенные слева обозначают мантису, то есть значащее число, а последняя – третья цифра показывает, сколько нулей нужно прибавить к двум предыдущим цифрам. Например, если на корпусе накопителя указано 153 , то емкость его равна 15 ×10 3 = 15000 пФ = 15 нФ = 0,015 мкФ.

Помимо емкости накопители характеризуются еще рядом основных параметров, которые рассмотрены далее.

Маркировка SMD конденсаторов

Маркировка SMD конденсаторов может наноситься на корпус в виде цифрового кодирования, но в преобладающем большинство – это несколько запутанная шифровка, состоящая из одной или двух букв латинского алфавита. Если букв две – то первая обозначает производителя, что нас интересует в меньшей степени. А вот вторая или единственная буква обозначает мантису, аналогично, как и при цифровом кодировании. Оставшаяся цифра показывает количество нулей после мантисы. Расшифровать цифровое значение буквы можно с помощью таблицы, приведенной ниже.

SMD накопители с аналогичными характеристиками также отличаются размерами. Ряд стандартных размеров приведен в таблице и на рисунке, приведенных ниже. Особенно важно учитывать размеры радиоэлектронных элементов при проектировании печатных плат.

Маркировка электролитических SMD конденсаторов практически ничем не отличается от выводных аналогов. Отрицательная контактная площадка обозначается черной меткой на плоской стороне корпуса со стороны соответствующей контактной площадки. Также указываются допустимое напряжение в вольтах и емкость в микрофарадах.

Довольно часто встречаются корпуса, на которых отсутствуют какие-либо обозначения. Здесь может выручить только измеритель емкости.

Последовательное соединение конденсаторов

Последовательно соединение конденсаторов позволяет подать на их обкладки большее напряжение, чем на отдельный накопитель. Напряжение на пластинках распределяется в зависимости от емкости элемента.

Если два накопителя обладают одинаковой емкостью, то подведенное напряжение распределяется поровну между ними. Однако суммарная емкость будет в два раза меньше отдельного накопителя.

В общем случае, следует помнить такое правило: при последовательном соединении конденсаторов вместе они способны выдержать большее напряжение, но за это приходится расплачиваться снижением емкости.

Параллельное соединение конденсаторов

Такой способ соединения наиболее распространен в практическом применении, поскольку не всегда хватает емкости одного накопителя особенно в электрических фильтрах качественных блоков питания. Параллельное соединение конденсаторов реализует суммирование емкостей отдельных накопителей. Это довольно просто запомнить, опираясь на приведенную выше формулу, из которой видно, что с увеличением площади пластин повышается емкость.

Поэтому при параллельном соединении конденсаторов происходит как бы увеличение площади обкладок, благодаря чему они способны накопить большее число электрических зарядов.

Основные параметры и номиналы конденсаторов рассмотрены здесь .

Они используются в таймерах, поскольку резисторы обеспечивают медленную зарядку и разрядку. Катушки индуктивности вместе с конденсаторами присутствуют в схемах колебательных контуров устройств приема-передачи. В различных конструкциях блоков питания они эффективно сглаживают пульсации напряжения после процесса выпрямления.

Через конденсаторы легко проходит , а задерживается. Это позволяет изготавливать фильтры разного назначения. В электрических и радиоэлектронных схемах, конденсаторы способствуют замедлению таких процессов, как увеличение или падение напряжения.

Конденсатор: принцип действия

Основной принцип работы конденсатора заключается в его способности к сохранению электрического заряда. То есть, он может в нужный момент заряжаться или разряжаться. Это свойство наиболее ярко проявляется при параллельном или последовательном соединении конденсатора с катушкой индуктивности в схемах передатчиков или радиоприемников.

Такое соединение позволяет получить периодическую смену полярности на пластинах. Вначале, производится зарядка первой пластины положительным зарядом, а, затем, вторая пластина принимает отрицательный заряд. После полной разрядки, происходит зарядка в обратном направлении. Вместо положительного заряда, пластина получает отрицательный заряд и, наоборот, отрицательная пластина заряжается положительно. Такая смена полярности происходит после каждого заряда и разряда. Данный принцип работы положен в основу генераторов, установленных в аналоговых приемопередающих устройствах.

Основная характеристика - электрическая емкость

Рассматривая принцип работы конденсатора, не следует забывать о такой его характеристике, как электрическая емкость. Прежде всего, она заключается в способности конденсатора к сохранению электрического заряда. То есть, чем выше емкость, тем большее значение заряда может быть сохранено.

Измерение электрической емкости конденсатора производится в фарадах и обозначается буквой F. Однако, одна фарада является очень большой емкостью, поэтому, на практике используются единицы меньшего значения, такие как микро-, нано- и пикофарады.

Представляет определенную сложность, в связи с различными вариантами маркировок.

Принцип устройства простейшего (плоского) конденсатора представлен на рис. 1.

Рис. 1. Принцип устройства плоского конденсатора.

1 обкладки,
2 диэлектрик

Емкость такого конденсатора определяется известной формулой

Определяется формулой

Если использовать обкладки из фольги и многослойный пленочный диэлектрик, то можно изготовить конденсаторы рулонного типа, у которых удельная аккумулирующая способность находится приблизительно в пределах от 0,1 J/kg до 1 J/kg или от 0,03 mWh/kg до 0,3 mWh/kg. Из-за малой удельной аккумулирующей способности конденсаторы такого вида не подходят для длительного сохранения существенного количества энергии, но они широко применяются как источники реактивной мощности в цепях переменного тока и как емкостные сопротивления.

Значительно более эффективно энергия может аккумулироваться в электролитических конденсаторах , принцип устройства которых изображен на рис. 2.

Рис. 2. .

1 металлический лист или фольга (алюминий, тантал или др.),
2 диэлектрик из окиси металла (Al2O3 , Ta2O5 или др.),
3 бумага и т. п., пропитанная электролитом (H3BO3 , H2SO4 , MnO2 или др.) и глицерином

Так как толщина слоя диэлектрика в этом случае обычно остается в пределах 0,1 µm, то эти конденсаторы могут изготовляться с очень большой емкостью (до 1 F), но на относительно малое напряжение (обычно на несколько вольт).

Еще большую емкость могут иметь ультраконденсаторы (супер-конденсаторы, ионисторы) , обкладками которых служит двойной электрический слой толщиной в несколько десятых долей нанометра на границе раздела электрода, изготовленного из микропористого графита, и электролита (рис. 3).

Рис. 3. .

1 электроды из микропористого графита,
2 электролит

Эффективная площадь обкладок таких конденсаторов достигает, благодаря пористости, до 10 000 m2 на каждый грамм массы электродов, что позволяет достигать очень большой емкости при очень малых размерах конденсатора. В настоящее время ультраконденсаторы выпускаются на напряжение до 2,7 V и емкостью до 3 kF. Их удельная аккумулирующая способность находится обычно в пределах от 0,5 Wh/kg до 50 Wh/kg и имеются опытные образцы с удельной аккумулирующей способностью до 300 Wh/kg.

Технология изготовления ультраконденсаторов весьма сложна, и стоимость на единицу сохраняемой в них энергии поэтому намного выше, чем у других конденсаторов, доходя до 50 000 ?/kWh. Несмотря на это, благодаря простоте конструкции, малым размерам, надежности, высокому кпд (95 % и более) и долговечности (несколько миллионов циклов заряда-разряда), они стали применяться как в транспортных средствах, так и в промышленных силовых установках взамен электрохимических аккумуляторов и других средств аккумулирования энергии. Особо выгодны они тогда, когда энергия потребляется в виде коротких импульсов (например, для питания стартера двигателей внутреннего сгорания) или когда требуется быстрая (секундная) зарядка аккумулирующего устройства. Например, в 2005 году в Шанхае началась опытная эксплуатация ультраконденсаторных автобусов, батарея конденсаторов которых заряжается во время стоянки автобуса на каждой остановке.

Старейшим конденсатором и заодно старейшим аккумулятором электрической энергии могут считаться янтарные предметы, электризацию которых при трении шерстяной тканью обнаружил греческий философ Фалес приблизительно в 590 году д. р. Х. Он же назвал это явление электронным (от греческого слова электрон, ‘янтарь’). Первые электростатические генераторы, изобретенные в 17-ом веке, тоже представляли собой шаровые или цилиндрические конденсаторы, на поверхности которых мог накапливаться электрический заряд, достаточный для вызывания разрядных явлений. Первым настоящим конденсатором считается все же усилительная склянка, изобретенная 11 октября 1745 года в ходе опытов по электризации воды физиком-любителем, деканом Камминского (Cammin) кафедрального собора Эвальдом Юргеном фон Клейстом (Ewald Jurgen von Kleist, 1700–1748) (рис. 4);

Рис. 4. Конденсатор Эвальда Юргена фон Клейста.

1 склянка, наполненная водой,
2 гвоздь, образующий вместе с водой верхнюю обкладку,
3 провод к электростатическому генератору,
4 металлическая тарелка (нижняя обкладка).
U напряжение

У этого прибора можно четко различить две обкладки и диэлектрик между ними. Первый плоский конденсатор изготовил в 1747 году лондонский врач Джон Бэвис (John Bevis, 1693–1771), а сам термин конденсатор (ит. condensatore, ‘сгущать‘) ввел в 1782 году профессор экспериментальной физики университета Павии (Pavia, Италия) Алессандро Вольта (Alessandro Volta, 1745–1827). Первые электролитические конденсаторы разработал в 1853 году заведующий Кенигсбергским физиологическим институтом (Konigsberg, Германия) Герман фон Гельмгольц (Hermann von Helmholtz, 1821–1894), а первый ультраконденсатор с электродами из пористого графита представил на патентование в 1954 году научный сотрудник электротехнического концерна Дженерал Электрик (General Electric, США) Говард Беккер (Howard I. Becker). Практическое применение ультраконденсаторов стало быстро развиваться в первые годы 21-го века.

Постоянного напряжения и выставляем на его крокодилах напряжение в 12 Вольт. Лампочку тоже берем на 12 Вольт. Теперь между одним щупом блока питания и лампочки вставляем конденсатор:

Не-а, не горит.

А вот если напрямую сделать, то горит:


Отсюда напрашивается вывод: постоянный ток через конденсатор не течет!

Если честно, то в самый начальный момент подачи напряжения ток все-таки течет на доли секунды. Все зависит от емкости конденсатора.

Конденсатор в цепи переменного тока

Итак, чтобы узнать, течет ли переменный ток через конденсатор, нам нужен генератор переменного тока. Думаю, этот генератор частоты вполне сойдет:


Так как китайский генератор у меня очень слабенький, то мы вместо нагрузки-лампочки будем использовать простой на 100 Ом. Также возьмем и конденсатор емкостью в 1 микрофарад:


Спаиваем как-то вот так и подаем сигнал с генератора частоты:


Далее за дело берется . Что такое осциллограф и с чем его едят, читаем здесь . Будем использовать сразу два канала. На одном экране будут высвечиваться сразу два сигнала. Здесь на экранчике уже видны наводки от сети 220 Вольт. Не обращайте внимание.


Будем подавать переменное напряжение и смотреть сигналы, как говорят профессиональные электронщики, на входе и на выходе. Одновременно.

Все это будет выглядеть примерно вот так:


Итак, если у нас частота нулевая, то это значит постоянный ток. Постоянный ток, как мы уже видели, конденсатор не пропускает. С этим вроде бы разобрались. Но что будет, если подать синусоиду с частотой в 100 Герц?

На дисплее осциллографа я вывел такие параметры, как частота сигнала и его амплитуда: F – это частота, Ma – амплитуда (эти параметры пометил белой стрелочкой). Первый канал помечен красным цветом, а второй канал – желтым, для удобства восприятия.


Красная синусоида показывает сигнал, который выдает нам китайский генератор частоты. Желтая синусоида – это то, что мы уже получаем на нагрузке. В нашем случае нагрузкой является резистор. Ну вот, собственно, и все.

Как вы видите на осциллограмме выше, с генератора я подаю синусоидальный сигнал с частотой в 100 Герц и амплитудой в 2 Вольта. На резисторе мы уже видим сигнал с такой же частотой (желтый сигнал), но его амплитуда составляет каких-то 136 милливольт. Да еще и сигнал получился какой-то “лохматый”. Это связано с так называемыми “ “. Шум – это сигнал с маленькой амплитудой и беспорядочным изменением напряжения. Он может быть вызван самими радиоэлементами, а также это могут быть помехи, которые ловятся из окружающего пространства. Например очень хорошо “шумит” резистор. Значит “лохматость” сигнала – это сумма синусоиды и шума.

Амплитуда желтого сигнала стала меньше, да еще и график желтого сигнала сдвигается влево, то есть опережает красный сигнал, или научным языком, появляется сдвиг фаз . Опережает именно фаза, а не сам сигнал. Если бы опережал сам сигнал, то у нас бы тогда получилось, что сигнал на резисторе появлялся бы по времени раньше, чем сигнал, поданный на него через конденсатор. Получилось бы какое-те перемещение во времени:-), что конечно же, невозможно.

Сдвиг фаз – это разность между начальными фазами двух измеряемых величин . В данном случае напряжения. Для того, чтобы произвести замер сдвига фаз, должно быть условие, что у этих сигналов одна и та же частота . Амплитуда может быть любой. Ниже на рисунке приведен этот самый сдвиг фаз или, как еще его называют, разность фаз :

Давайте увеличим частоту на генераторе до 500 Герц


На резисторе уже получили 560 милливольта. Сдвиг фаз уменьшается.

Увеличиваем частоту до 1 КилоГерца


На выходе у нас уже 1 Вольт.

Ставим частоту 5 Килогерц


Амплитуда 1,84 Вольта и сдвиг фаз явно стает меньше

Увеличиваем до 10 Килогерц


Амплитуда уже почти такая же как и на входе. Сдвиг фаз менее заметен.

Ставим 100 Килогерц:


Сдвига фаз почти нет. Амплитуда почти такая же, как и на входе, то есть 2 Вольта.

Отсюда делаем глубокомысленные выводы:

Чем больше частота, тем меньшее сопротивление конденсатор оказывает переменному току. Сдвиг фаз убывает с увеличением частоты почти до нуля. На бесконечно низких частотах его величина составляет 90 градусов или π/2 .

Если построить обрезок графика, то получится типа что-то этого:


По вертикали я отложил напряжение, по горизонтали – частоту.

Итак, мы с вами узнали, что сопротивление конденсатора зависит от частоты. Но только ли от частоты? Давайте возьмем конденсатор емкостью в 0,1 микрофарад, то есть номиналом в 10 раз меньше, чем предыдущий и снова прогоним по этим же частотам.

Смотрим и анализируем значения:







Внимательно сравните амплитудные значения желтого сигнала на одной и той же частоте, но с разными номиналами конденсатора. Например, на частоте в 100 Герц и номиналом конденсатора в 1 мкФ амплитуда желтого сигнала равнялась 136 милливольт, а на этой же самой частоте амплитуда желтого сигнала, но с конденсатором в 0,1 мкФ уже была 101 милливольт(в реальности еще меньше из за помех). На частоте 500 Герц – 560 милливольт и 106 милливольт соответственно, на частоте в 1 Килогерц – 1 Вольт и 136 милливольт и так далее.

Отсюда вывод напрашивается сам собой: при уменьшении номинала конденсатора его сопротивление стает больше.

С помощью физико-математических преобразований физики и математики вывели формулу для расчета сопротивления конденсатора. Прошу любить и жаловать:

где, Х С – это сопротивление конденсатора, Ом

П – постоянная и равняется приблизительно 3,14

F – частота, измеряется в Герцах

С – емкость, измеряется в Фарадах

Так вот, поставьте в эту формулу частоту в ноль Герц. Частота в ноль Герц – это и есть постоянный ток. Что получится? 1/0=бесконечность или очень большое сопротивление. Короче говоря, обрыв цепи.

Заключение

Забегая вперед, могу сказать, что в данном опыте мы получили (ФВЧ). С помощью простого конденсатора и резистора, применив где-нибудь в звуковой аппаратуре такой фильтр на динамик, в динамике мы будет слышать только писклявые высокие тона. А вот частоту баса как раз и заглушит такой фильтр. Зависимость сопротивления конденсатора от частоты очень широко используется в радиоэлектронике, особенно в различных фильтрах, где надо погасить одну частоту и пропустить другую.